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ABSTRACT 

ELUCIDATING CELLULAR SIGNALING PATHWAYS THAT CONTRIBUTE 
TO THE IMMUNOPATHOGENESIS OF APLASTIC ANEMIA 

 
SEPTEMBER 2014 

 
CHRISTINA ARIETA KUKSIN, B.A., UNIVERSITY OF MASSACHUSETTS 

AMHERST 
 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Lisa M. Minter 

 

 Aplastic Anemia (AA) is a rare bone marrow failure disease that is hallmarked by 

hypocellular bone marrow and peripheral pancytopenia. Studies have shown that the 

disease is driven by aberrant T helper type-1 (Th1) responses that destroy bone marrow 

stem and progenitor cells. Although 70% of patients respond to therapy, others are 

refractory or relapse after initial treatment and eventually succumb to disease. In an effort 

to discover other therapeutic modalities for non-responsive patients, we sought to 

elucidate signaling pathways within T cells that could be contributing to the 

immunopathogenesis of AA. Using a mouse model of disease, our lab has previously 

shown that both the Notch1 signaling pathway and PKCθ signaling pathway is necessary 

for AA development. In this work, we expand our knowledge of both pathways and show 

that active PKCθ (pPKCθ) is highly expressed in AA mice compared to irradiation 

controls and active PKCθ is needed for Notch1IC activation and IFNγ production in T 

cells. Also, we found that PKCθ differentially regulates Notch1IC and IFNγ in CD8+ T 

cells compared to CD4+ T cells. Also, pPKCθ is highly expressed in peripheral blood 

mononuclear cells collected from treatment-naïve AA patients and treating patient 
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samples with the PKCθ inhibitor, rottlerin, reduced both NOTCH1IC expression and 

IFNγ production.  

Furthermore, we were able to show that NF-κB signaling was necessary to drive 

AA through multiple pathways. For example, we were able to decrease T cell activation 

and expansion and Th1 cytokine production in our mouse model when we blocked NF- 

κB signaling. We were also able to show that NF-κB signaling regulates CXCR4 

expression, and AA induced mice have higher levels of CXCR4 present on their T cells. 

Surprisingly, we were further able to reduce CXCR4 expression and motility in response 

to its chemokine ligand, SDF-1 by blocking NF-κB signaling.  

Finally, we were able to delineate a role for the microRNA, miR-155 in our 

mouse model of AA. We found that miR-155 expression was increased in AA induced 

mice, and its inhibition was able to ameliorate disease symptoms and ablate infiltration of 

T cells into the bone marrow. We identified a potential target of miR-155 in CD4+ T cells 

called programmed death ligand 1 (PD-L1) and show that mice induced with miR-155-

deficient cells have increased iTregs in the bone marrow and spleen. Taken together, 

these data illuminate multiple pathways that contribute to AA which could be further 

investigated for alternative treatments of the disease. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 T Cell Function and Immunity 

 

1.1.1 T Cell Activation 

	  

Successful activation of naïve T cells occurs through a two-step signaling process. 

The first signal is provided by antigen presenting cells (APCs) that present foreign 

peptide or antigen loaded on Major Histocompatibility Complexes (MHC) to the T cell 

receptor (TCR; reviewed in Smith-Garvin et al., 2009).  The second signal is provided by 

engagement of the co-stimulatory receptor, CD28, which is expressed on T cells 

(reviewed in Bour-Jordan et al., 2011).  CD28 will bind to its ligands CD80 and CD86 

(also known as B7.1 and B7.2, respectively) on the APCs to induce a positive activation 

signal.  Both signals are imperative for successful T cell activation; without both signals, 

T cells can become anergic to protect against aberrant T cell signaling.  T cell signaling 

can also be dampened through negative co-stimulatory molecules such as CTLA-4 and 

PD-1 which can compete with CD28 for binding to CD80 and CD86 to block T cell 

activation (Parry et al., 2005). 

After successful ligation of the TCR, a cascade of phosphorylation events on the 

activating ITAM motifs causes the recruitment of proteins to the TCR to form the 

immunological synapse (Reth, 1989). The immunological synapse is characterized by 
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controlled movement of membrane receptors to specific subcellular sites to facilitate 

interaction with ligands on interacting cells (Yokosuka and Saito, 2010). The movement 

of the IS through the lipid bilayers of the membrane also facilitates the recruitment of 

important cytosolic adaptor proteins that mediate the signaling downstream of the TCR, 

such as LCK and Zap-70. Additionally, the recruitment of Zap70 to the TCR further 

recruits other adaptor signaling molecules, such as LAT and SLP76 (Bubeck Wardenburg 

et al., 1996; Zhang et al., 1998).  The formation of the immunological synapse allows for 

the activation and expression of key transcription factors important in T cell survival: 

activated protein-1 (AP-1), nuclear factor of activated T cells (NFAT) and nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB).  It is through these pathways 

that expression of key survival proteins, like the T cell survival cytokine IL-2, can be 

expressed. An overview of TCR signaling can be found in Figure 1.1. 

 

1.1.2 T Cell Differentiation and Subsets 

 

CD4+ T cells have the ability to express and produce different cytokine signatures 

needed to mediate defense against different pathogens through a process called T cell 

differentiation.  CD4+ T cells can differentiate into many different T helper (Th) type 

subset depending on the cytokine milieu present during their activation (these include: 

Th1, Th2, Th17, iTreg, Th9, Th22, and Tfh).  T helper type 1 (Th1) cells are responsible 

for protection against intracellular pathogens such as viruses and activate CD8+ cytotoxic 

T cells.  Th1 cells express the lineage-specific transcription factor, T-BET, and secrete 

the Th1 associated cytokine, IFN-γ (Szabo et al., 2002). T helper type 2 (Th2) cells are 
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required for humoral immunity and are responsible for allergic reactions and removal of 

extracellular pathogens.  Th2 cells secrete IL-4, IL-5, and IL-13, and require GATA3 

expression for differentiation (Zheng and Flavell, 1997).  T helper-17 (Th17) cells 

provide protection against nematodes and fungal infections, require TGFβ and IL-6 for 

generation, secrete IL-17 and IL-23, and express RORγt (Langrish et al., 2005; Yang et 

al., 2008).  Th17 cells also are one of the major cell types that mediate the autoimmune 

disease multiple sclerosis (Jager et al., 2009).  Inducible T regulatory cells (iTregs) are 

regulated by the transcription factor FOXP3 and produce TGFβ (Chen et al., 2003; Fu et 

al., 2004; Rao et al., 2005).  These cells, unlike their counterparts, are responsible for 

suppressing inflammation. 

Cytotoxic T lymphocytes (CTL) are CD8+ T cells that are activated similarly to 

CD4+ T cells, except they are presented antigen through MHC type I complexes (present 

on most nucleated cell types) instead of MHC type II complexes (present only on 

professional APCs). This gives CTLs the unique ability to identify intracellularly infected 

cells and induce programmed death pathways to reduce the spread of infection.  CTLs 

induce apoptosis of target cells most often through the release of lytic granules, such as 

perforin and granzyme, (reviewed in Barry and Bleackley, 2002). Perforin is a pore 

forming protein that is found in the cytolytic granules released from CTLs. Although its 

exact function in inducing cell death is debatable, studies in perforin knockout mice have 

shown that it is required to facilitate granzyme mediated killing (Kagi et al., 1994; 

Kojima et al., 1994; Lowin et al., 1994). Granzyme proteins are a family of distinct serine 

proteases that are found in cytolytic granules released from CTLs and activate cell death 

pathways.  The most common of these proteins is granzyme B, which mediates killing 
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through activation of caspase pathways and DNA fragmentation (Heusel et al., 1994). 

Granzyme B is important for efficient cell death, as CTLs deficient in granzyme B kill at 

a slower rate (Pardo et al., 2004). Although lytic proteins released in granules are the 

most common form of CTL killing, CTLs have been shown to induce death through the 

Fas/Fas ligand pathway and through the production of cytokines such as IFNγ and TNF, 

that can cause cell toxicity to neighboring cells. Figure 1.2 outlines the different T helper 

subtypes and cytotoxic T cells. 

 

1.1.3 T Helper Type 1 Driven Autoimmunity 

 

Despite the extensive regulation of immune responses to protect against aberrant 

reactions, clones of T or B cells that recognize self-antigens as foreign do arise and cause 

autoimmunity. Some autoimmune diseases are mediated by auto-antibodies (such as 

systemic lupus erythematosus); however, other autoimmune reactions are driven by self-

reactive T cells that become activated, instead of tolerized or anergic, in response to self-

antigen. This leads to the production of cytokines and cellular lysis pathways that cause 

extreme damage in the affected organ or tissues that express the self-antigen.  Some 

autoimmune disease with a strong T helper type 1 component include rheumatoid 

arthritis, multiple sclerosis, insulin-dependent diabetes mellitus, and aplastic anemia.  

Research into the inciting antigens and mechanisms driving these diseases can help in the 

development of more effective therapies. 
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1.2 Aplastic Anemia 

	  

1.2.1 Symptoms and Etiologies 

 

Severe aplastic anemia (AA) is a rare bone marrow failure disease that mainly 

affects children and young adults (Young et al., 2008).  At the time of diagnosis, patients 

often present with low levels of circulating platelets, low white and red blood cell counts 

in the periphery, and a characteristic hypocellular bone marrow.  Because of the severe 

pancytopenia associated with the disease, patients experience cachexia, hypoxia, are 

highly susceptible to bleeding episodes, and are often vulnerable to multiple infections. 

Additionally, patients with AA will often times either have coexisting or co-evolving 

hematological diseases, such as paroxysmal nocturnal hemoglobinuria (PNH) or 

myelodysplasia (MDS; Young et al., 2008). If left untreated, AA is uniformly fatal 

(Dezern and Brodsky, 2011). 

The etiology of aplastic anemia is unclear in many cases. Paul Ehrlich first 

described AA in 1888 in a pregnant woman, and while no strong correlation exists, some 

cases of AA have developed after pregnancy especially after episodes of eosinophilic 

fasciitis (Choudhry et al., 2002; Young, 2006). While five to ten percent of AA cases 

follow an episode of seronegative hepatitis (Lu et al., 2004), no definitive infectious 

agent has been shown to cause disease.  Some cases are associated with chemical or drug 

exposure, such as benzene, pesticides, and chloramphenicol; overrepresentation of drug 
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metabolizing glutathione-S-transferase gene deletions have been observed in some 

patient cohorts (Dufour et al., 2005; Sutton et al., 2004; Young et al., 2008). 

One third of aplastic anemia patients have shortened telomeres in their white 

blood cells (Young, 2006).  Upon closer assessment of genomic DNA, some patients, 

even older adults, were shown to have mutations in TERC (Fogarty et al., 2003), TERT 

(Yamaguchi et al., 2005), and TERF1 (Savage et al., 2006).  Family members who share 

these mutations but have adequate blood counts, do have shortened telomeres, but also 

have hypocellular bone marrows and reduced CD34 population (Fogarty et al., 2003). 

Based on these findings, it seems that mutations in genes that encode proteins that repair 

telomeres confers a genetic risk factor to patients since hematopoietic stem cells with 

already-shortened telomeres may not be able to withstand the immune mediated damage 

associated with disease (Young, 2006). Despite evidence of some etiological correlation, 

the cause of AA is still unknown in most cases. 

 

1.2.2 Evidence for Aplastic Anemia as an Autoimmune Disease 

 

Because many cases of AA are idiopathic, it has been hard to properly study the 

underlying mechanisms that contribute to the early pathogenesis of the disease.  

However, evidence points to an inciting self-immune reaction as the driving impetus of 

disease development.  It has been shown in early cases that conditioning regimens to 

dampen the immune system before bone marrow transplants were critical even when 

recipients received syngeneic bone marrow (Appelbaum et al., 1985; Hinterberger et al., 

1997).  However, the most compelling evidence that AA is an immune mediated disease 
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is the responsiveness of patients to immunosuppressive therapies such as anti-thymocyte 

globulin (ATG) and cyclosporin A (CsA; Young, 2006).  Some patients are refractory to 

immunosuppressive therapies, and this information could infer a non-immune modality 

of disease.  However, these patients characteristically present with severe stem cell 

depletion, a “spent” immune response, or immunological mechanisms causing the 

resistance to immunosuppressive therapies (Young et al., 2008). 

Because of the strong immune mechanism associated with AA and the idiopathic 

nature of the disease, AA has been characterized as an autoimmune bone marrow failure 

disease.  Because of this, there has been a search for the inciting autoantigens responsible 

for disease.  There have been a few autoantigens identified by screening patient blood 

samples against a peptide library.  One study identified kinectin, a widely expressed 

protein that is highly expressed by hematopoietic cells in the bone marrow, being bound 

by autoantibodies from 40% of patient sera. Although kinectin-reactive cytotoxic T cells 

can be generated in vitro to inhibit hematopoietic colony formation, no anti-kinectin T 

cells can be found in patients peripheral blood or bone marrow samples (Hirano et al., 

2003). Another autoantigen found in a minority of patients was diazepam-binding related 

protein-1, an enzyme essential in the oxidation of unsaturated fatty acids that is broadly 

distributed in tissues.  Unlike kinectin, a putative T-cell epitope derived from diazepam-

binding related protein-1 could stimulate one patient’s cytotoxic T cells (Feng et al., 

2004).  A few other hematopoietic associated proteins (and not stromal associated 

proteins) have been identified as targets of autoantibodies in AA patients using 

serological identification of antigens by recombinant cDNA expression cloning 

(SEREX), however it is still unclear as to how identifying these autoantibodies can be 
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used theraputically, and how the targets of the autoantibodies may correlate to the T cell-

mediated pathogenesis of AA (Goto et al., 2013). 

 

1.2.3 Immunopathogenesis of the Bone Marrow 

 

The severe pancytopenia associated with AA is the result of an extreme defect in 

hematopoiesis in the hypocellular bone marrow of patients.  At first it was believed that 

there was a defect solely in the patients’ hematopoietic stem cells that caused this 

pancytopenia.  However, early in vitro analysis of patient bone marrow showed that T 

cells mediated the pathogenicity in the bone marrow and limited the colony formation in 

a clonogenic assay.  When lymphocytes were depleted from diseased bone marrow, 

colony formation was restored.  Addition of the AA lymphocytes to normal bone marrow 

samples inhibited hematopoiesis (Gorski et al., 1979; Kagan et al., 1976; Torok-Storb et 

al., 1980). Early assessment of the suppressive lymphocytes characterized them as 

primarily activated cytotoxic T cells (Maciejewski et al., 1994).  Molecular analysis of 

patients’ CD8+CD28- cells using flow cytometric analysis for T cell receptor (TCR) Vβ 

subfamilies length and sequencing analysis of the CDR3 region show an oligoclonal 

expansion of  CD8+CD28- cells upon disease diagnosis, depletion of these clones with 

immunosuppressive treatment, and re-emergence of the clones upon relapse (Risitano et 

al., 2004).  It is unclear how these T cells are activated; however, overrepresentation of 

HLA-DR2, an MHC Class II molecule which is also highly expressed in multiple 

sclerosis patients, suggests a role for antigen recognition by T cells (Maciejewski et al., 

2001; Nakao et al., 1994). 
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Further analysis of circulating T cells from AA patients point to a Th1 mechanism 

driving disease.  Early studies described the pathogenic lymphocytes as producing T 

helper type-1 cytokines, such as IFNγ and TNF (Sloand et al., 2002; Tong et al., 1991; 

Zoumbos et al., 1985). Polymorphisms in the tumor necrosis factor-α (TNF2) promoter at 

−308 (Demeter et al., 2002), IFNγ (Dufour et al., 2004), and in IL-6 genes (Gidvani et 

al., 2007) are prevalent in patient cohorts. Additionally, AA patient T cells have 

increased levels of the Th1 master regulator transcription factor T-BET (Solomou et al., 

2006), as well as intracellular NOTCH1, which directly regulates T-BET expression 

(Roderick et al., 2013).  The regulatory T cell population, whose purpose is to suppress 

autoreactive T cells, is decreased in patients with aplastic anemia (Solomou et al., 2007) 

and studies using animal models of AA have been able to ameliorate disease with an 

infusion of regulatory T cells (Chen et al., 2007). 

The mechanism by which the cytotoxic T cells mediate destruction of the 

hematopoietic stems cells of the bone marrow is through different apoptosis-inducing 

pathways. Bystander death of the hematopoietic stem cells and stromal cells is caused by 

the high levels of cytokines expressed in the bone marrow which inhibits the ability of 

the cells to proliferate and differentiate, and causes them to upregulate the Fas receptor 

(Maciejewski et al., 1995a; Maciejewski et al., 1995b; Selleri et al., 1996). Because of the 

upregulation of the Fas receptor on the hematopoietic stem cells of the bone marrow, 

direct T cell mediated killing through Fas/Fas ligand interactions has been documented 

(Ismail et al., 2001; Killick et al., 2000; Maciejewski et al., 1995b).  Cytotoxic T cell-

mediated killing also directly mediates destruction of the hematopoietic and stromal cells 

of the bone marrow through the release of the cytotoxic granules, perforin and granzyme, 
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which are upregulated in patients with aplastic anemia (Kook et al., 2001; Xu et al., 

2003).  An overview of the immunopathogenesis of the bone marrow in AA can be found 

in Figure 1.3. 

 

1.2.4 Current Treatments 

 

Currently, there are three types of treatment for Aplastic Anemia:  hematopoietic 

stem cell transplantation (HSCT), immunosuppressive therapy (IST), and supportive care.  

In children, the most effective treatment for AA is HSCT using bone marrow from a 

histocompatible matched sibling donor as the source for hematopoietic stem cells 

(Scheinberg, 2012).  A retrospective study done by the Center for International Blood and 

Marrow Transplant Research (CIBMTR), reported a 5 years survival rate of 82% for 

those under 20 years of age, compared with approximately 50% for those over the age of 

40 (Gupta et al., 2010).  Because of the rising risk of graft-versus-host disease (GVHD) 

and other mortality associated risks with older patients, 40 is the upper age limit for 

HSCT in the clinic (Maury et al., 2009; Peinemann et al., 2011). 

For patients with no available HSCT donor, or for patients over the age of 40, the 

best mode of treatment is immunosuppressive therapy (IST).  The standard IST for 

patients in the United States, Europe and Japan is administration of horse ATG and CsA, 

which produces positive hematologic responses in 60%-75% of cases (Young, 2006). 

Children have a higher survival rate with IST than adults (75% vs. 50%; Scheinberg, 

2012).  IST is routinely continued for 6 months, at which point efficacy of treatment and 

alternate treatment modalities are explored if there is IST failure. 
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For patients who are refractory to the initial HSCT or IST treatments, there are 

additional options.  For patients without a matched sibling donor, there has been an 

increase in unmatched donor HSCT, with considerable success in children (Scheinberg, 

2012).  In patients for whom HSCT is not a preferable option, a small study reported 

some success with a second round of IST using rabbit ATG, rather than horse ATG, or 

Alemtuzumab, a monoclonal antibody specific for the mature lymphocyte antigen, CD52, 

with Alemtuzumab being better-tolerated than rabbit ATG (Risitano et al., 2010).  In 

patients who relapse after initial successful IST treatment, a common practice is to 

reintroduce CsA for a period of 2 to 3 months, and taper off treatment to low doses 

(Scheinberg and Young, 2012). 

Supportive care is important in the treatment of AA and, although not curative, it 

is essential to the management of disease symptoms.  Red blood cell (RBC) or platelet 

transfusions are often necessary to maintain quality of life; however, the risk of 

alloimmunization to RBC antigens or HLA antigens is a considerable risk.  Restrictive 

transfusion policies for those who are candidates for HSCT is required (Hochsmann et 

al., 2013). Patients who have been given numerous RBC transfusions are also at risk for 

an iron overload.  Therefore, iron chelation therapy is needed. 

Because of a severely suppressed immune system, prevention of infection in AA 

patients is paramount.  Neutropenia is extremely common in AA patients, leaving them 

susceptible to infection, especially fungal infections.  Therefore, many patients are given 

prophylactic antibiotic or anitmycotic drugs.  Although viral infections can be severe in 

immunosuppressed patients, prophylactic antiviral drugs are not widely used; therefore, 

patients must be monitored closely for signs of infection. 



www.manaraa.com

	  

	   12	  

1.3 Protein Kinase C Theta in T Cells 

	  

1.3.1 Protein Kinase C Family 

 

Members of the protein kinase C (PKC) family are serine and threonine kinases 

that phosphorylate numerous target proteins in the cell. This family of 10 isozymes is 

divided into three groups depending on the homology of their structure and mode of 

activation. The members of the conventional PKC group (cPKC) consist of PKC-α, 

PKC-βI, PKC-βII, and PKC-γ.  cPKC members are activated by Ca2+ and diacylglycerol 

(DAG). The novel PKC (nPKC) family consists of PKC-δ,  PKC −ε,  PKC −η and PKC -

θ and are activated by DAG or PMA alone because they lack the critical Ca2+ binding 

motifs in their C2 domain. The atypical PKC (aPKC) family contains PKC -ζ and PKC-

ι/λ and are not activated by DAG/PMA or calcium.  They lack a calcium-sensitive C2 

domain, while their C1 domain binds PIP3 or ceramide (not DAG or PMA). 

PKCθ shares a similar conformation to members of the nPKC family (shown in Figure 

1.4A) with the N-terminus of PKCθ comprising the regulatory region while the C-

terminus of the protein comprises the catalytic region (Baier et al., 1993; Chang et al., 

1993). As explained above, the C2 domain of PKCθ is similar to other PKC family 

members, however, it does not bind Ca2+. The two tandem cysteine-rich domains of C1 

bind to DAG, with the C1b domain having a higher affinity for DAG than C1a (Melowic 

et al., 2007).  The C1 domain is flanked by two variable regions, V1 and V3.  V3 has 

been shown to be involved in an indirect association of PKCθ with CD28, probably 

through interaction with LCK (lymphocyte-specific protein tyrosine kinase).  This 
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interaction leads to the translocation of PKCθ to the immunological synapse in T cells 

(Kong et al., 2011). 

When PKCθ is its inactive state, the N-terminal regulatory region binds to the 

substrate binding region in the catalytic domain on the C terminus and blocks the 

interaction of the catalytic domain with its substrates (House and Kemp, 1987). PKCθ 

becomes activated through a two step process (Seco et al., 2012).  After activation of the 

T cell through the TCR and CD28 stimulation, DAG binds to the C1 domain to ‘open’ 

the activation loop (Melowic et al., 2007). After exposure of the activation loop, PKCθ 

can be phosphorylated by germinal center kinase-like kinase (GLK) on Thr538 in the 

activation loop, which results in catalytic activation (Chuang et al., 2011). PKCθ is 

phosphorylated at six sites: Y90, T219, T538, S676, S685, and S695, which are important 

for activation and downstream signaling (reviewed in Wang et al., 2012). 

 

1.3.2 The Role of PKCθ in T Cell Activation 

 

When T cells are stimulated through the TCR and CD28 co-receptor, the 

immunological synapse is generated at the area of contact between the T cell and APC 

(Rao et al., 1999).  Part of the synapse is called the supramolecular activation complex 

(SMAC) which includes different signaling molecules important to T cell signaling, such 

as LCK. After successful T effector cell stimulation, PKCθ is recruited to the SMAC 

through association with the cytoplasmic tail of CD28 (Kong et al., 2011; Schaefer et al., 

2004). In the SMAC, PKCθ is phosphorylated by LCK at Y90 which allows for its 

subsequent phosphorylation and autophosphorylation at T219 (Bauer et al., 2001; Bi et 
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al., 2001; Freeley et al., 2005; Lee et al., 2005; Liu et al., 2002; Liu et al., 2000; Thuille 

et al., 2005). Phosphorylation is necessary for retaining PKCθ in the IS, and without 

PKCθ, IS formation cannot be sustained, thus blocking successful T effector cell 

signaling (Valitutti et al., 1995). In T regulatory cells, however, PKCθ is sequestered 

away from the IS in the distal pole complex, suggesting differential roles for PKCθ in T 

effector cells and T regulatory cells (Zanin-Zhorov et al., 2010). 

After activation of PKCθ through phosphorylation at T538 by GLK, PKCθ can 

mediate downstream T cell signaling (Chuang et al., 2011).  PKCθ phosphorylates the 

membrane-associated guanylate kinase, Carma1, also known as Card11 (Blonska and 

Lin, 2009). Phosphorylation of Carma1 induces the formation of the CBM complex, a 

scaffolding complex comprised of Carma1, Bcl10 and Malt1, which activates the NF-κB 

signaling pathway (Thome and Weil, 2007).  PKCθ also activates the AP1 transcription 

factor by phosphorylation of the ste20-family kinase SPAK  and is important for NFAT 

transactivation (Li et al., 2004; Pfeifhofer et al., 2003). 

To further explore the role of PKCθ in T cell signaling, knockout mice were 

developed by replacing the exon encoding the ATP-binding site of the kinase domain 

with the neomycin resistance gene (Sun et al., 2000). Using these mice, it was shown that 

that PKCθ-/- CD3+ T lymphocytes have a severe reduction in proliferation and IL-2 

secretion (Sun et al., 2000). Based on this evidence, PKCθ is an integral driver of T cell 

activation, and Figure 1.4B summarizes its role in T cell activation. 

 

 

 



www.manaraa.com

	  

	   15	  

1.3.3 The Role of PKCθ in Disease and Autoimmunity 

 

How PKCθ may contribute to T helper cell-mediated processes remains 

controversial. Reports suggest PKCθ is required for Th2 and Th17 responses, but it has 

been shown to be dispensable for generating both Th1-mediated antiviral and memory T 

cell responses (Kwon et al., 2012; Marsland et al., 2005; Marsland et al., 2004). 

Accumulating evidence supports a function for PKCθ in mediating autoimmune 

disorders, such as experimental autoimmune encephalomyelitis, rheumatoid arthritis, and 

myosin-induced autoimmune myocarditis (Healy et al., 2006; Marsland et al., 2007; 

Salek-Ardakani et al., 2005; Tan et al., 2006).  Furthermore, in a mouse model of graft-

versus-host disease (GVHD), which has a strong Th1 component, PKCθ was required to 

induce GVHD pathology, but not to clear viral pathogens or mediation of graft-versus-

leukemia processes (Valenzuela et al., 2009). These data suggest that inhibiting PKCθ in 

T cells may abrogate their allopathogenic activity, while preserving their ability to 

respond appropriately to infectious stimuli. As such, PKCθ may represent an attractive 

target for modulating immune-mediated conditions, including autoimmune diseases. 

 

1.4 Notch Signaling Pathway 

 

1.4.1 Notch Receptors and Their Ligands 

 

The Notch protein was originally discovered in Drosophila melanogaster in 1914 

when deletion of the gene encoding this protein produced a “notched” wing phenotype. 
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Since the discovery of Notch, it has become evident that it is plays a pivotal role in cell 

fate decisions throughout different systems. Mammals express four Notch receptors 

(Notch1, 2, 3, and 4) and their differing structures are summarized in Figure 1.5A. Notch 

contains three major domains: the extracellular domain of Notch is comprised of 

epidermal growth factor (EGF)-like repeats, the transmembrane domain contains a 

cysteine rich lineage domain (LIN) and a hetero-dimerization domain which prevents 

ligand-independent activation, and an intracellular domain.  The intracellular domain 

contains a RAM domain (RBP-Jκ-associated molecule domain), an ANK domain 

(ankyrin repeat domain) that mediates protein-protein interactions, two nuclear 

localization sequences (NLS), a transcriptional activation domain (TAD; only present in 

Notch1 and Notch2), and a PEST domain (proline-glutamate-serine and threonine-rich 

domain (PEST) that regulates protein stability (Osborne and Minter, 2007). 

Notch can be activated by association with its ligands: Delta-like (DLL1, DLL3, 

and DLL4) and Jagged (Jag1 and Jag2) ligands (Figure 1.5A). All Notch ligands contain 

a conserved DSL sequence (Delta/Serrate/Lag2), which is important for receptor binding, 

and EGF-like repeats. Jagged ligands also contain a cysteine rich (CR) region close to the 

plasma membrane. To promote ligand binding, Notch can be glycosylated on its 

extracellular domain by the Fringe glycosyltransferases, Manic fringe, Lunatic fringe, 

and Radical fringe . In most cases, Fringe glycosylation promotes binding by the Delta-

like ligands (Radtke et al., 2010). 
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1.4.2 Notch Signaling Pathway: Canonical and Non-Canonical 

 

For activation of the Notch signaling pathway, the protein must undergo a series 

of proteolytic cleavages to create its active form (intracellular Notch, or NotchIC).  Notch 

is produced in the Golgi, and in the trans-Golgi, it undergoes its first cleavage event by 

furin-like proteases, creating a non-covalently linked, heterodimeric receptor (Logeat et 

al., 1998). The heterodimeric form of Notch translocates to the plasma membrane where 

it can then interact with its ligands. After ligand interaction, Notch is cleaved by an 

ADAM metalloprotease, TNFα-converting enzyme (TACE), which causes the release of 

the extracellular portion of the protein (Brou et al., 2000). Notch is then endocytosed and 

the intracellular portion of the protein is ubiquitinated, allowing for the final cleavage of 

Notch by γ-secretase (De Strooper et al., 1999). This final cleavage releases Notch from 

the membrane and allows for its signaling within the cytoplasm and the nucleus. 

The canonical signaling pathway of Notch results in gene transcription through 

interaction with its binding partner RBP-Jκ (murine homolog), also called as CSL (CBF-

1 in mammals, suppressor of hairless in Drosophila melanogaster and Lag 1 in 

Caenorhabditis elegans). RBP-Jκ exists in the nucleus as a transcriptional repressor; 

however, binding of NotchIC to RBP-Jκ results in the recruitment of co-activators, such as 

p300 and MAML (Mastermind-like). The building of this complex leads to transcription 

of Notch target genes, such as Hes (Hairy/enhancer-of-split) or Hey (Hairy/enhancer-of-

split related). 

Lately, there have been descriptions of transcription of Notch genes that do not 

require RBP-Jκ, and this has become known as non-canonical Notch signaling. It has 
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been shown previously that Notch and NF-ĸB exist in a complex on the Ifng promoter 

even in the absence of RBP-Jκ (Cho et al., 2009; Shin et al., 2006). Also, T cell activation 

and differentiation was found to be Notch1 and NF-ĸB dependent, but RBP-Jκ 

independent (Dongre et al., 2014). Interestingly, NF-ĸB binding sites on DNA contain a 

nested RBP-Jκ consensus binding sequence. (Minter and Osborne, 2012). Other than NF-

ĸB mediated Notch signaling, other binding partners have been described in Notch 

signaling that are independent of RBP-Jκ, such as PI3K, Akt, T-bet and GATA-3. These 

signaling events happen not just in the nucleus, but also in the cytosol (Minter and 

Osborne, 2012). An outline of canonical Notch signaling is found in Figure 1.5B. 

 

1.4.3 Notch Signaling in T Cells 

 

Notch signaling is critical for the regulation of T cell development, activation, and 

differentiation. Notch1 is required for T cell lineage commitment, and deletion of Notch 

in developing thymocytes redirects them towards a B cell fate (Pui et al., 1999). 

Conversely, overexpression of Notch1 in bone marrow progenitors initiates T cell 

leukemia (Radtke et al., 1999). Notch signaling was also shown to be important in T cell 

activation. When T cells are activated through TCR and CD28 ligation, cleaved Notch1 

leads to expression of CD25 (the high affinity IL-2 receptor) and the secretion of IL-2, 

while inhibition of Notch signaling using a γ-secretase inhibitor (GSI) blocks peripheral 

T cell activation, proliferation, and IFN-γ production (Adler et al., 2003; Palaga et al., 

2003). 
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How Notch signaling drives the differentiation of T cells towards different helper 

subtypes is an area of intense investigation. Inhibition of Notch signaling using GSIs 

blocks the ability of T cells to differentiate into Th1 cells (but not Th2) through a 

reduction in T-bet expression (Minter et al., 2005). Using mice deficient in RBP-Jκ  or 

expressing a dominant negative Mastermind-like (DNMAML), it has been surmised that 

Notch signaling regulates Th2 fate via GATA3 and IL-4 expression; however, since 

Notch was not specifically deleted in these studies, it is unknown if other RBP-Jκ or 

MAML binding partners could be driving Th2 differentiation (Amsen et al., 2007; Fang 

et al., 2007). Inhibition of Notch activation using GSI has also been shown to regulate 

Th17 differentiation, and Treg differentiation through regulation of FoxP3 expression 

(Keerthivasan et al., 2011; Samon et al., 2008). Notch signaling has also been shown to 

play an important role in CD8+ T cell signaling. Inhibition of Notch results in a decrease 

in the expression of the CD8+ T cell associated transcription factor, Eomes, and thus 

results in the reduction of granzyme B and perforin production (Cho et al., 2009). 

Altogether, this evidence suggests that Notch signaling plays pleiotropic roles in T cell 

activation and differentiation. 

 

1.5 NF-κB Pathway 

 

1.5.1. NF-κB Signaling Pathway 

 

The NF-κB family of transcription factors comprises five homo- or heterodimers: 

c-Rel, p65 (RelA), RelB, p50 (NF-κB1) and p52 (NF-κB2). p50 and p52 are processed 
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from the precursors p105 and p100, respectively. Each homo- or heterodimer has distinct 

expression patterns and regulatory functions, depending on the cell type (Gilmore, 2006). 

All NF-κB subunits contain a ‘Rel homology domain’ (RHD) near the N-terminus which 

contains the sequences needed to bind to DNA (κB elements), allows interaction between 

the subunits and the inhibitory IκB proteins, and facilitates NF-κB entry into the nucleus. 

c-Rel, p65, and RelB possess transcriptional transactivation domains (TADs), as shown in 

Figure 1.6A. Usually, dimers containing these subunits are associated with active 

transcription (Hoffmann et al., 2006). Control of target gene transcription by p50 or p52, 

two members lacking TAD, causes repression of transcription at κB sites, either by 

recruiting histone deacetylases to promoters or by blocking binding by other NF-κB 

subunits that contain TADs. However, the subunits p50 or p52 can also promote gene 

expression by interacting with co-activators (Hoffmann et al., 2006). 

The NF-κB signaling pathway can be activated through either the canonical or 

non-canonical route. In the canonical pathway, NF-κB exists in an inactive state 

sequestered in the cytosol of the cell by inhibitor of κB (IκB). When the pathway is 

stimulated, IκB kinase-β (IKKβ) is activated and phosphorylates IĸB causing its 

subsequent ubiquitination and degradation.  NF-κB is then released and translocates into 

the nucleus where it can mediate transcription of downstream target genes. The 

predominate subunits involved in the canonical pathway are p65 and p50 (Hayden and 

Ghosh, 2008). In the non-canonical pathway, NF-κB inducing kinase (NIK) directly 

phosphorylates and activates IKKα, which in turn phosphorylates p100, and causes its 

processing to p52. p52 then goes on to form a heterodimer with RelB and translocate to 

the nucleus to mediate gene transcription (Sun, 2011). 
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1.5.2 NF-κB Signaling and T cell activation 

 

When T cells become activated by antigen recognition through the TCR, a series 

of signaling events downstream of the TCR and CD28 causes activation of PKCθ 

(described above) and activation of NF-κB through the classical pathway.  PKCθ 

phosphorylates Carma1 at S552 and S645 early and transiently after TCR signaling, and 

these phosphorylation steps are critical to induce the conformational change in Carma1 

that allows the binding of Bcl10 and Malt1, to form the CBM complex (Matsumoto et al., 

2005; Sommer et al., 2005). Phosphorylation of Carma1 at a third site S649 is inhibitory 

to Carma1 activation. This phosphorylation event is delayed after TCR signaling but is 

sustained for a longer duration than the early phosphorylation steps (Moreno-Garcia et 

al., 2009). After assembly of the CBM complex, IKKγ is polyubiquitinanted, likely by 

TRAF6, while IKKβ is phosphorylated by the protein kinase, TAK1 (Thome et al., 2010; 

Wang et al., 2001). Once phosphorylated, IKKβ is able to phosphorylate IκB and trigger 

its proteasomal degradation, allowing NF-κB to translocate into the nucleus and mediate 

downstream transcription of genes involved in T cell survival, proliferation and effector 

functions. A summary of NF-κB signaling after T cell activation is shown in Figure 1.6B. 

In activated T cells, NF-κB has been shown to control the expression of IL-2, 

CD25, IL-2Rα, and IFNγ (Vallabhapurapu and Karin, 2009). NF-κB has also been shown 

to be important in T cell differentiation. Transgenic mice which express non-degradable 

IκB in T cells have impaired Th1 responses but not Th2 responses (Aronica et al., 1999). 

RelA, c-Rel and RelB are needed for IFNγ production, however, only RelB deficiency 
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has been shown to cause a reduction in T-bet expression (Balasubramani et al., 2010; 

Corn et al., 2005; Hilliard et al., 2002). CD4+ cells with a deficiency in p50 can still 

express T-bet and produce IFNγ.  However, p50 has been shown to be necessary for 

GATA3 expression, and p50-/- deficient mice have defective allergic airway 

inflammatory responses (Das et al., 2001). c-Rel has also been shown to play a major role 

in thymic and peripheral Treg differentiation and FoxP3 expression (Long et al., 2009; 

Zheng et al., 2010). c-Rel- and p65-deficient T cells have defective IL-17 production and 

Th17 differentiation (Ruan et al., 2011). c-Rel deficient mice are also resistant to 

experimental autoimmune encephalomyelitis (Hilliard et al., 2002). Based on this 

evidence, it is clear that NF-κB subunits have differential roles in T cell activation and 

differentiation. 

 

1.5.3 NF-κB in Disease 

 

Because NF-κB is implicated in many cell survival pathways throughout different 

systems, it has long been associated with disease. Its role in the proinflammatory 

response, anti-apoptotic pathways, and cellular growth is prominent; therefore, its 

dysregulation has been implicated in many cancer models (Baldwin, 2001). NF-κB is also 

used by HIV as its transcriptional regulator to propagate new virus (Ghosh et al., 1998). 

Other viruses, such as Epstein Barr virus and Herpes Simplex virus, also activate NF-κB 

in an attempt to induce proliferative and pathogenic responses in their host cell 

(Mosialos, 1997). Chronically activated NF-κB has been implicated in a number of 
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autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, type I 

diabetes, multiple sclerosis, and inflammatory bowel disease (Sun et al., 2013). 

Because of its widespread involvement in disease, many attempts to target the 

pathway have been studied. Many classes of drugs have been shown to block different 

parts of the NF-κB pathway, such as glucocorticoids, NSAIDS, immunosuppressive 

agents (such as CsA), and cyclopentenone prostaglandins (Yamamoto and Gaynor, 

2001). Clinical trials are currently underway in many different diseases using broader 

inhibitors that are known to target the NF-κB pathway, such as curcumin which down-

regulates expression of NF-κB, along with other transcription factors, to cause apoptosis, 

and Bortezomib, a broad proteasome inhibitor that blocks the degradation of IκB. 

Because of the wide scope of NF-κB signaling in disease, many specific inhibitors are 

being developed, but they are still in early stages of study (Sun et al., 2013). 

 

1.6 Chemokine Receptor 4 

 

1.6.1 The CXCR4/SDF-1 signaling axis 

 

Chemokines are small molecules that have selective chemoattractant properties 

depending on the tissue microenvironment.  They can have a broad range of activities 

because of the multiple signaling pathways induced by the binding of chemokines to their 

receptors. Chemokine receptors are seven-pass-transmembrane receptors coupled to 

heterotrimeric G proteins (Viola et al., 2006) and through binding to their selective 

chemokines, cells can be directed to migrate to sites of infections or to different lymphoid 
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organs. Stromal derived factor-1 (SDF-1), also known as CXCL12, is the sole ligand for 

CXCR4, and after the binding of SDF-1, CXCR4 undergoes dimerization to activate 

signaling pathways (Percherancier et al., 2005; Vila-Coro et al., 1999). When CXCR4 

becomes activated, the receptor is able to activate the heterotrimeric G-protein and 

activate downstream signaling pathways important to gene transcription, actin 

polymerization, cytoskeleton rearrangement and cell migration (Holland et al., 2006; 

Vila-Coro et al., 1999). 

CXCR4 and SDF-1 deficient mice have a lethal phenotype, showing that CXCR4 

and SDF-1 are important during embryonic development.  CXCR4 is expressed on 

progenitor cells, and this allows for the migration of embryonic stem cell progenitors 

where they will differentiate into adult organ and tissues (Wong and Korz, 2008). 

CXCR4 is expressed on hematopoietic stem cells, and SDF-1 has a role in the quiescence 

for long-term HSC maintenance (Sugiyama et al., 2006). The main source for SDF-1 in 

the adult is the bone marrow. CXCR4 is also expressed on endothelial cells, smooth 

muscle cells, and endothelial progenitor cells, and it has been shown to promote 

angiogenesis (Gupta et al., 1998; Yamaguchi et al., 2003; Zernecke et al., 2005). SDF-

1/CXCR4 has an important role in neurogenesis, and mice deficient in both SDF-1 and 

CXCR4 have abnormal development, both of the cerebellum and hippocampus (Miller et 

al., 2008). In the late 1990’s, CXCR4 was shown to serve as a co-entry receptor for HIV-

1 on CD4+ T cells (Feng et al., 1996). CXCR4 expression has also been shown to be 

overexpressed in many cancers, including human breast cancer cell lines and primary and 

metastatic breast tumors, ovarian cancer, prostate cancer and melanoma (Hall and 

Korach, 2003; Kim et al., 2008; Muller et al., 2001; Taichman et al., 2002). 
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1.6.2 CXCR4 and T cell Signaling 

 

CXCR4 is constitutively expressed on T lymphocytes, and CXCR4’s main role in 

T cells is to drive migration along gradients of SDF-1. CXCR4 also acts as a costimulator 

of T cell proliferation and T cell differentiation through interaction with the TCR (Kumar 

et al., 2006; Molon et al., 2005). When SDF-1 initiates CXCR4 signaling and activates G 

proteins downstream of T cell activation, there is an increase in TCR-activation 

associated kinases and adaptor proteins, such as phosphatidylinositol 3-kinase, ZAP-70, 

Fyn, Lyn, and SLP-76 (Chernock et al., 2001; Ganju et al., 1998; Smith et al., 2013; 

Ticchioni et al., 2002). Downstream of the TCR, activation of CXCR4 also increases the 

activity of Akt and the JAK/STAT signal transduction pathway (Ganju et al., 1998; 

Tilton et al., 2000). Also, for CXCR4 signaling to activate Ras and the ERK pathway, 

ZAP-70 expression is required (Kremer et al., 2003; Kumar et al., 2006). 

Although CXCR4 depends on TCR signaling, CXCR4 engagement does not 

simply recapitulate TCR signaling pathways. For example, while the TCR can stimulate 

NF-κB and NFAT activity, multiple studies have proven that CXCR4 cannot (Kumar et 

al., 2006; Molon et al., 2005; Nanki and Lipsky, 2000). Also, stimulation of CXCR4 with 

SDF-1 does not increase the phosphorylation of the TCR or ZAP-70, suggesting that 

CXCR4 utilizes pre-existing, constitutively-phosphorylated TCR-ZAP-70 complexes 

(Kumar et al., 2006). Because CXCR4 activation increases ERK signaling and ERK 

enhances the half-life of AP-1 subunits, CXCR4 signaling after SDF-1 binding most 

likely enhances the survival of resting T cells by activating several anti-apoptotic genes 

(Muller et al., 2001; Suzuki et al., 2001). Also the activation of AP-1 through CXCR4 
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helps to upregulate the production of AP-1 target genes, such as CD69, IL-10, and IL-2 

(D'Ambrosio et al., 1994; Jain et al., 2005; Wang et al., 2005). CXCR4 effects on IFNγ 

production seem to be context dependent. If SDF-1 is added to cultures at the time of 

TCR ligation using costimulatory antibodies, IFNγ production is not increased; however, 

when SDF-1 is added to culture 2 hours prior to TCR ligation, or after APC-mediated T 

cell stimulation, it can significantly increase IFNγ production by T cells (Kumar et al., 

2006; Molon et al., 2005; Nanki and Lipsky, 2000). Based on this evidence, it seems that 

CXCR4 can be used as a costimulatory molecule to help promote T cell survival with or 

without TCR signaling in environments in which SDF-1 is present. CXCR4 signaling in 

T cells is summarized in Figure 1.7. 

 

1.6.3 Therapeutic Benefits of Altering CXCR4 Signaling 

 

As explained above, CXCR4 overexpression has been described in many primary 

and metastatic cancers and other autoimmune disease, such as multiple sclerosis and 

lupus (Domanska et al., 2013). Also, there have been reports of an upregulation of 

CXCR4 and SDF-1 after chemotherapy with anti-angiogenic drugs such as bevacizumab, 

(Kioi et al., 2010; Shaked et al., 2008). Because of this, CXCR4 inhibition has been 

studied as a potential therapy for these diseases. Studies of the CXCR4 inhibitor 

AMD3100 shows that it mobilizes CD34+ human hematopoietic stem and progenitor 

cells from the bone marrow into the peripheral blood (Broxmeyer et al., 2005). Therefore, 

AMD3100 has been approved by the FDA for stem cell mobilization into the peripheral 

blood for the purposes of transplantation, and together with G-CSF (granulocyte-colony 
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stimulating factor), as therapy in Non-Hodgkin’s lymphoma and multiple myeloma 

patients. Currently, multiple Phase I and Phase II trials are underway to assess the 

efficacy of CXCR4 inhibitors in multiple cancers (with or without corresponding 

chemotherapy), and other autoimmune diseases (Domanska et al., 2013). 

 

1.7 Interaction of Signaling Pathways in T cells 

 

1.7.1 Cross talk between the NF-κB and PKCθ pathways 

 

Considerable evidence has been gathered that PKCθ activation is crucial for 

stimulation of the NF-κB pathway. For example, a constitutively active mutant of PKCθ 

induces activation of both an NF-κB reporter gene, and activation of the CD28 response 

element encoding for IL-2 (Coudronniere et al., 2000; Lin et al., 2000). While inhibitors 

specific for PKCα. –β, and -γ had no effect on NF-κB nuclear translocation after T cell 

stimulation, addition of rottlerin (a PKCθ and –δ specific inhibitor) to T cells was able to 

abrogate NF-κB translocation (Coudronniere et al., 2000). This data was confirmed by a 

study wherein expression of kinase-dead PKCθ or addition of PKCθ antisense RNA 

blocked NF-κB activation after TCR stimulation (Lin et al., 2000). A loss of PKCθ in 

CD4+ T cells from PKCθ deficient mice causes a severe reduction in IκB degradation and 

NF-κB activation following TCR stimulation, a decrease in IL-2, and a decrease in T cell 

stimulation (Sun et al., 2000). PKCθ regulation of the NF-κB pathway is limited to TCR 

mediated NF-κB activation (canonical pathway), as stimulation of NF-κB by either TNF 

or IL-1 (through the non-canonical pathway) is preserved (Sun et al., 2000). PKCθ 
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directly interacts with the NF-κB pathway through phosphorylation of Carma1 (described 

above). This action allows for formation of the CBM complex, and the subsequent 

downstream events in canonical NF-κB signaling. 

 

1.7.2 Cross talk between the Notch and NF-κB pathways 

 

Several studies have demonstrated interaction between Notch and NF-κB 

pathways in T cells. When Notch signaling is abrogated using GSI, NF-κB activity is 

reduced in peripheral T cells (Palaga et al., 2003). Cytosolic Notch1IC has been shown to 

physically interact with Carma1 and the nucleated CBM complex, and blocking Notch 

using shRNA causes inhibition of the formation of the CBM complex (Shin et al., 2014). 

Additionally, Notch has been shown to physically interact with NF-κB (specifically p50 

and c-Rel), and Notch regulates NF-κB activity by sustaining its nuclear localization 

(Shin et al., 2006). Also, data from our lab has shown that when a non-nuclear form of 

Notch1IC was expressed, NF-κB activity remains high in T cells (Shin et al., 2014). 

Furthermore, Notch3 transgenic mice show constitutive NF-κB activity in T regulatory 

cells and T-ALL models (Barbarulo et al., 2011; Vacca et al., 2006). As mentioned 

above, chromatin immunoprecipitation experiments have shown that Notch1 and NF-κB 

subunits can be found on the Ifng promoter and this interaction could be abolished with 

GSI treatment, suggesting that Notch1 and NF-κB work in tandem to promote IFNγ 

expression (Shin et al., 2006). In addition, Notch1 and NF-κB could also be found in a 

complex on the promoters of Eomes, Granzyme b and Perforin, and this interaction could 

also be abrogated with GSI treatment (Cho et al., 2009). 
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1.7.3 Cross talk between Notch and PKCθ pathways 

 

Although the exact mechanism by which the Notch and PKCθ pathways interact 

is unclear, their interaction seems inevitable in T cells because of the important role they 

both play in the NF-κB pathway. For example, the formation of the CBM complex 

requires both Notch and PKCθ, as described previously; however, data from our lab 

suggests that these two proteins may interact with each other as well. Using microscopy 

and biochemical approaches, our lab has shown that Notch and PKCθ co-localize at the 

immunological synapse and physically interact as part of the CBM complex (Shin et al., 

2014). Additionally, earlier reports have shown synergistic activities between PKCθ and 

NotchIC in T-ALL models induced by cells containing activating NotchIC mutations (Felli 

et al., 2005; Giambra et al., 2012). Because it is unclear when and why during T cell 

activation PKCθ and Notch interact, elucidation of these signaling pathways can shed 

light on diseases in which these pathways are dysregulated. A summary of how these 

pathways interact can be found in Figure 1.8. 

 

1.8 MicroRNAs 

 

1.8.1 Biogenesis and Modulation of Protein Expression 

 

MicroRNAs (miRNAs) are a class of evolutionarily conserved, single-stranded, 

non-coding RNAs that control protein expression at a post-transcriptional level. They 
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have been detected in mammals, plants, and viruses, and have been described to affect 

multiple signaling pathways in these systems (Bartel, 2004). To date, miRNAs have been 

predicted to control the expression of 30% of genes in the mammalian genome, and 

deregulation of microRNAs have been implicated in numerous human diseases including 

many autoimmune diseases (Filipowicz et al., 2008). 

MicroRNAs can be found in gene clusters (like miR-17-92 cluster) or in single 

units scattered across the genome (like miR-155). MicroRNAs are mainly grouped in 

what was previously thought of as “junk DNA” or the introns and intergenic portions of 

the DNA.  However, some miRNAs have been found to be encoded in gene exons that do 

not encode for proteins (such as miR-155 encoded in the Bic gene). Once miRNAs are 

encoded, primarily by RNA Polymerase II, primary transcripts that are about 80 

nucleotides long are generated and folded into hairpin structures that have a 5’-cap and a 

3’-polyA tail. The primary structures are then processed into approximately 70 

nucleotides-long pre-miRNA stem loop structures in the nucleus by a nuclear 

microprocessor that contains the RNase III enzyme, Drosha, and a double-stranded-RNA-

binding protein DGCR8 (Digeorge syndrome critical region gene 8). The pre-miRNA 

stem-loop structures are then transported to the cytoplasm through the exportin 5 

complex (Denli et al., 2004). 

Once in the cytoplasm, the pre-miRNA structures are then processed further by 

the endonuclease, Dicer, along with its cofactors ,TAR RNA-binding protein (TRBP) and 

PKR-activating protein (PACT), which cleave the pre-miRNA structure into 21–24 base 

pair duplex miRNA, containing 2 nucleotides that overhang the 3′ of each strand 

(Chendrimada et al., 2005). One strand is then loaded onto the RNA induced silencing 
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complex (RISC) containing Argonaute (AGO) proteins (Diederichs and Haber, 2007). 

Once the miRNA is loaded onto the RISC complex, miRNAs pair with their target 

mRNA based on the complementarity of the microRNA seed sequences (nucleotides in 

positions 2–8 from the 5ʹ end of an miRNA) to the 3’ UTR (untranslated region) of the 

mRNA target. If there is perfect complementarity between the seed sequence and the 3’ 

UTR target sequence, the mRNA will be degraded. If there is imperfect complementarity, 

there will be translational repression of the mRNA. The ability of miRNAs to bind with 

different affinity to a multitude of different targets allows for a fine-tuning of gene 

expression that can affect signaling. Figure 1.9 outlines the biogenesis of miRNAs. 

 

1.8.2 MicroRNA-155 and the Immune System 

 

MicroRNA-155 (miR-155) is a highly evolutionarily conserved microRNA that is 

encoded in the second exon of the Bic (B-cell integration cluster) gene, which is 

responsible for a subset of avian leukosis virus integration-induced lymphomas (Tam, 

2001). It has been previously shown that miR-155 can transform B cells, resulting in 

lymphoma in mouse models (Costinean et al., 2006). miR-155 is expressed in both 

myeloid and lymphoid progenitors at different levels, depending on the cell type. During 

erythrocyte maturation, miR-155 expression decreases (Masaki et al., 2007). Also, 

transducing a K562 cell line with miR-155 significantly reduces their ability to 

differentiate into erythroid or megakaryocyte lineages (Georgantas et al., 2007). miR-155 

expression is increased in a human monocytic cell line when the cell line was stimulated 

with LPS (Taganov et al., 2006). Also, addition of PolyI:PolyC (polyriboinosinic–



www.manaraa.com

	  

	   32	  

polyribocytidylic acid) or TNF can induce miR-155 expression in macrophages through 

JNK pathway activation (O'Connell et al., 2007). 

The expression of miR-155 is necessary for B cell immunity. When BIC/miR-155 

deficient mice were developed, they were found to have a severe defect in B cell IgM 

production and switched antigen-specific antibodies when immunized with tetanus toxin 

fragment C protein (Rodriguez et al., 2007). In a study utilizing a separate BIC/mir-155 

deficient strain, miR-155 deficient mice had reduced germinal center function, cytokine 

production, and T cell-dependent antibody response (Thai et al., 2007). In antigen-

stimulated B cells, miR-155 targets expression of PU.1 driving B cell maturation and IgG 

class switching, and there is a highly conserved target sequence in the 3’ UTR region of 

PU.1 (Vigorito et al., 2007). Also, miR-155 targets and represses expression of the 

enzyme activation-induced cytidine deaminase, or AID (Dorsett et al., 2008; Teng et al., 

2008).  AID is important for the process of somatic hypermutation that is required for 

high-affinity IgG antibody repertoire in antigen-activated B cells by deaminating cytosine 

residues and introduces U:G mismatches in DNA. 

 

1.8.3 miR-155 and T cell function 

 

miR-155 is important in many T cell signaling processes, from stimulation to 

differentiation. Upon stimulation through the TCR, miR-155 expression is upregulated 

(Dudda et al., 2013; Gracias et al., 2013; Thai et al., 2007). Most T cell lineages in miR-

155 deficient mice develop normally, however, CD4+ T cells differentially skew to Th2 

in vivo with higher amounts of IL-4 produced under neutral stimulation conditions 
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(Rodriguez et al., 2007; Thai et al., 2007). Since c-Maf has been shown to be a target of 

miR-155, T cells deficient in miR-155 would have higher c-Maf production, and thus 

have higher IL-4 production (Rodriguez et al., 2007). miR-155 is also important for CD8+ 

effector responses through the regulation of type 1 interferon signaling and through the 

regulation of SOCS1 and STAT5 signaling (Dudda et al., 2013; Gracias et al., 2013). 

miR-155 is also important in Tregs through its repression of SOCS1, and miR-155 

deficient animals have reduced absolute numbers of Treg cells (Lu et al., 2009). miR-155 

deficient T cells also have a defect in IL-17 production with less Th17 cells produced 

(Murugaiyan et al., 2011; O'Connell et al., 2010; Yao et al., 2012). This defect in IL-17 

production is due to the inability of miR-155 deficient cells to respond to IL-23 through 

the transcription factor Ets1 (Hu et al., 2013). 

Because of the important role that miR-155 plays in T cell stimulation and 

differentiation, its dysregulation is evident in many autoimmune diseases. High levels of 

miR-155 have been found in patients with multiple sclerosis, rheumatoid arthritis, and 

atopic dermatitis (Junker et al., 2009; Sonkoly et al., 2010; Stanczyk et al., 2008). 

Additionally, mice deficient in miR-155 do not develop EAE or collagen-induced 

arthritis (Bluml et al., 2011; Hu et al., 2013; O'Connell et al., 2010; Yao et al., 2012). 

Additionally, miR-155 deficient CD8+ cells were ineffective at controlling tumor growth 

while overexpression of miR-155 enhances the anti-tumor response (Dudda et al., 2013). 

miR-155 has also been shown to regulate T cell response to infectious pathogens, such as 

the response to viruses (Lind and Ohashi, 2014). 
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1.9 Programmed Death Receptor Signaling 

 

1.9.1 The Programmed Death Signaling Pathway 

 

The Programmed Death-1 (PD-1; CD279) receptor is an inhibitory receptor that is 

found on the cell surface.  It is made up of a single immunoglobulin (Ig) superfamily 

domain and a cytoplasmic domain containing two tyrosine-based signaling motifs: a 

tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch 

motif (Ishida et al., 1992). PD-1 has two receptors: PD-L1 (B7-H1, CD274) and PD-L2 

(B7-H2, CD273), and both ligands have Ig-V-like and Ig-C-like extracellular domains 

and a short intracellular domain (Dong et al., 1999; Latchman et al., 2001; Tseng et al., 

2001). 

PD-1 is expressed on natural killer T (NKT) cells, NK cells, activated monocytes, 

some subsets of dendritic cells (DCs), and T and B cells. PD-1 is upregulated on T and B 

cells after TCR or BCR stimulation, and sustained antigen stimulation sustains high PD-1 

expression (Freeman et al., 2006). Cytokines such as IL-2 and interferons can also 

potentiate PD-1 expression on T cells (Kinter et al., 2008). PD-L1 is broadly expressed 

throughout cell subtypes, while PD-L2’s expression is more restricted.  PD-L1 is 

constitutively expressed on not only hematopoietic lineages, such as T and B cells, DCs, 

macrophages, mesenchymal stem cells and bone marrow-derived mast cells, but it is also 

expressed on many non-hematopoietic lineages (Freeman et al., 2000; Yamazaki et al., 

2002).  These include vascular endothelial cells, epithelial cells, muscle cells, 

hepatocytes, placental cells, pancreatic islet cells and stromal cells of the bone marrow 



www.manaraa.com

	  

	   35	  

(Eppihimer et al., 2002; Liang et al., 2003). Although PD-L1 is broadly expressed, 

inflammatory molecules, such as IFNγ, can induce the upregulation of PD-L1 expression. 

PD-L2, conversely, has a more limited expression on hematopoietic cell subtypes, such 

as DCs, macrophages, bone marrow-derived mast cells and on peritoneal B1 B cells as 

well as on germinal center B cells (Zhong et al., 2007). PD-L2 expression is not as 

inducible as PD-L1 expression, but IL-4 and GM-CSF are the strongest known stimuli for 

inducing PD-L2 expression (Eppihimer et al., 2002; Latchman et al., 2001; Loke and 

Allison, 2003; Schreiner et al., 2004; Yamazaki et al., 2002). 

 

1.9.2 PD-1/PD-L1 Signaling in T cell function 

 

The major role of PD-1 signaling in T cells is the inhibition of T cell activation by 

the engagement of the PD-1 receptor on the T cell by PD-L1 on the APCs. Certain 

subsets express a high level of PD-1, such as CD4+Foxp3+ regulatory T cells  and 

“exhausted” CD8 cells (Baecher-Allan et al., 2003; Wherry et al., 2007). After ligation of 

PD-1 in the presence of TCR signaling, the receptor transduces an inhibitory signal 

through phosphorylation of the tyrosine residue on the ITSM region of its cytoplasmic 

tail. This leads to the recruitment of SHP-2 (SH2-domain containing tyrosine phosphatase 

2) and possibly SHP-2, to the cytoplasmic domain of PD-1.  This then downregulates 

PI3K activity mediated by CD28, thus downregulating the activation of Akt and T cell 

activation as shown in Figure 1.10 (Parry et al., 2005). PD-1 ligation has also been shown 

to inhibit phosphorylation of CD3, ZAP70 and PKCs, thus inhibiting signaling directly 

downstream of the TCR (Parry et al., 2005). PD-L1 can also inhibit T cell stimulation 
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when expressed on T cells by binding the CD80 molecule (B7-1) and blocking the 

engagement of CD28 with CD80, thus inhibiting proper T cell stimulation (Butte et al., 

2007). 

Other than affecting T cell activation downstream of the TCR, PD-1 activation 

also effects downstream effector signaling pathways, either during migration to the site of 

inflammation, or in the target tissue (Keir et al., 2008; Riella et al., 2011).  PD-1 

activation dramatically decreases the production of IL-2, IFNγ, and TNF, thus affecting T 

cell proliferation (Keir et al., 2008; Latchman et al., 2001). PD-1 activation also 

decreases the expression of the effector T cell associated transcription factors, GATA-3, 

T-BET, and Eomes (Nurieva et al., 2006). Additionally, PD-1 signaling has been shown 

to promote iTreg development, and PD-L1 engagement of its receptors on naïve T cells 

promotes iTreg development by inhibiting mTOR/Akt signaling (Francisco et al., 2009). 

Amarnath and colleagues have also shown that PD-L1:PD-1 signaling can be used in a 

human-into-mouse GVHD model to convert human Th1 cells into iTregs in vivo 

(Amarnath et al., 2011). It is clear from this evidence that PD-L1:PD-1 signaling is 

important in the maintenance of proper T cell function and the protection against aberrant 

T cell signaling. 

 

1.9.3 The PD-1/PD-L1 Signaling and Disease Regulation 

 

Because of the important role of PD-1 signaling in T cells, its dysregulation has 

been linked to many autoimmune diseases. Mice that are deficient in PD-1 develop 

autoimmune disease over time because of the loss in peripheral tolerance.  The type of 
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autoimmune disease they develop depends on the strain of mouse.  For example, mice 

deficient for PD-1 develop a lupus-like glomerulonephritis and arthritis on a C57BL/6 

background, while they develop dilated cardiomyopathy on a BALB/C background 

(Nishimura et al., 2001). PD-L1 expression on parenchymal cells have also been shown 

to protect against autoimmune diabetes (Keir et al., 2006). Single-nucleotide 

polymorphisms in the gene PDCD1 (gene encoding for PD-1), has been found in various 

kinds of autoimmune diseases, including SLE, type I diabetes, multiple sclerosis, 

rheumatoid arthritis, Grave’s disease, ankylosing spondylitis, and aplastic anemia (James 

et al., 2005; Nielsen et al., 2003; Prokunina et al., 2002; Wu et al., 2013). Although 

dysregulation of PD-1 signaling is evident in many autoimmune diseases, no agonist for 

PD-1 or its ligands is currently in clinical trials. 

In normal immune function, PD-1 is responsible for attenuating the primary 

immune response during acute infection. Using a model of adenovirus-induced hepatitis, 

PD-1 deficiency causes a significant decrease in the proliferation and accumulation of 

effector T cells in the liver.  This also causes a rapid clearance of the virus; however, 

mice deficient in PD-1 conversely develop severe hepatitis, probably since PD-1 is 

responsible for dampening the cytokine storm that leads to excess tissue damage (Iwai et 

al., 2003). After chronic viral infection (such as with LCMV clone 13), viral specific PD-

1hiCD8+ T cells become anergic and unresponsive, or “exhausted.”  They lose their 

ability to produce TNF, IFN-γ, and IL-2. Although this population is not functionally 

competent, they contain memory cells that can re-expand after secondary infection with 

acute forms of the virus (Barber et al., 2006). 
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Clinically, PD-1:PD-L1 signaling has been mostly scrutinized in cancer models. 

The PD-1:PD-L1 pathway plays a major role in dampening the immune surveillance 

against tumors. Overexpression of PD-L1 on plasmacytoma cell inhibits cytolytic activity 

of CD8+ T cells through engagement of PD-1, and enhances the growth and invasiveness 

of the plasmacytoma (Iwai et al., 2002). Additionally, high expression of PD-L1 on 

clinical samples of tumors is associated with poor prognosis (Thompson et al., 2004). 

Also, blocking PD-1:PD-L1 interaction through antibody inhibition or genetic 

manipulation has been shown to accelerate the eradication of tumors in various 

experimental models (Blank et al., 2004; Curiel et al., 2003; Hirano et al., 2005; Strome 

et al., 2003). Currently, there is a fully humanized mAB to PD-1 (also known as 

nivolumab) that has made it through phase I clinical trials with little toxicity, as well as a 

mAb to PD-L1 (BMS-936559 or MDX-1105) that has also made it through some clinical 

trials, both with a potential for strong antitumor activity (Brahmer et al., 2010; Brahmer 

et al., 2012; Topalian et al., 2012). Although its efficacy in cancer treatment may prove 

high, it has not yet been determined the effect that blocking PD-1 signaling may have on 

worsening GVHD after bone marrow transplantation, which is a treatment used for some 

cancers. 

 

1.10 Significance and Hypothesis 

 

Although most patients respond to standard therapy (BMT or IST) given to 

Aplastic Anemia patients, there is still a large cohort of patients who do not respond to 

this therapy and succumb to disease. Because no autoantigen to this disease has been 
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found, elucidating the mechanisms driving the pathogenic T cell response is paramount to 

developing other treatments for patients who are refractory to treatment or relapse. 

Therefore, through the following specific aims, we intend to extend the understanding of 

pathogenic T cell signaling pathways driving Aplastic Anemia: 

 

Specific Aim I: Determine if PKCθ works in conjunction with Notch1 signaling to drive 

AA pathogenesis. 

Specific Aim II: Elucidate the role NF-κB plays in the disease pathology of Aplastic 

Anemia. 

Specific Aim III: Determine if miR-155 drives disease severity of AA, and understand 

the mechanism of its signaling. 

 

Using our murine model of AA and patient samples, we sought to evaluate these 

aims to find pathways that could prove to be novel targets for therapy. We hypothesize 

that PKCθ works in conjunction with Notch signaling to drive AA both in the mouse 

model and patient samples. Also, we predict that targeting NF-κB using small molecule 

inhibitors can ameliorate disease symptoms through the down regulation of CXCR4 

expression and suppression of T cell activation. Also, we hypothesize that miR-155 

expression is increased in mice with AA compared to controls, and genetically deleting 

miR-155 in our mouse model mitigates disease severity through an increase in PD-L1 

expression on T cells. The findings of this work can not only be used to further clinical 

translational research for Aplastic Anemia, but also for any autoreactive T cell signaling 

driving autoimmune diseases 
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. 

Figure 1.1 T Cell Receptor Signaling 
 
Signals delivered by the engagement of the T-cell receptor and co-stimulatory molecules 
induce different signaling pathways that result in the activation of multiple transcription 
factors. Ligation of the TCR by peptide–MHC complexes triggers the recruitment of 
signaling molecules, such as Zap70, LAT, and SLP76. Downstream signaling activates 
the NF-κB pathway, NFAT pathway, and AP-1 pathway to promote a program of gene 
expression that leads to interleukin-2 (IL-2) production and T cell activation. Adapted 
from Miller et al., 2007. 
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Figure 1.2 T Cell Subsets 
 
A. Following activation by APCs, naive CD4+ T cells can be polarized into different 
effector T cell subsets depending on the local cytokine environment. The differentiation 
of each of these effector T cell subsets is controlled by distinct sets of transcription 
factors. Adapted from Zou and Restifo, 2010. B. After activation of naïve CD8+ by 
APCs, CD4+ T cells or MHCI presentation, CD8+ effector cells produce chemokines, 
cytokines and apoptotic proteins in order to eliminate infected cells. Adapted from De 
Haes, et al., 2012. 

A 

B 
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Figure 1.3 Immunopathogenesis of the bone marrow in Aplastic Anemia 
 
Unknown self-antigens are presented to T lymphocytes by antigen presenting cells 
(APCs), which trigger T cells to activate and proliferate. Increased production of IL-2 
leads to polyclonal expansion of T cells, and the upregulation of T-bet causes 
differentiation of T cells to a Th1 program. IFNγ and TNF upregulate other T cells' 
cellular receptors and also the Fas receptor. The expression of these proteins activate 
apoptosis programs in hematopoietic stem cells resident in the bone marrow, and leads to 
the pancytopenia that is associated with AA. Adapted from Young, 2006. 
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Figure 1.4 PKC Family Members 
 

A. Structure of PKC proteins. PKC proteins are classified into conventional PKCs 
(cPKC; α, β, and γ), novel PKCs (nPKC; ε, δ, θ, and η) and atypical PKCs (aPKC; ζ and 
ι). All families have the kinase region and C1 region (Constant 1 region), while only 
cPKCs have a Ca2+ binding region. Adapted from Pfeifhofer-Obermair et al., 2012. B. 
Activation of PKCθ. Ligation of the TCR induces the activation of tyrosine kinase LCK, 
ZAP-70, induces phosphorylation of SLP-76. SLP-76 directly interacts with and activates 
PLCγ1 which cleaves a phospholipid, generating the second messenger DAG. The 
binding of DAG with PKC-θ induces a conformational change; T538 of PKC-θ is then 
phosphorylated by GLK, leading to catalytic activation of PKC-θ. The CD28 
costimulatory activates PDK-1, which facilitates PKC-θ T538 phosphorylation. Catalytic 
activation and membrane translocation of PKC-θ lead to the activation of transcription 
factors NF-κB, NF-AT, and AP-1, and to subsequent T cell activation. Adapted from 
Wang et al., 2012. 
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Pfeifhofer-Obermair et al. Flavor of PKC in T cells

FIGURE 1 |The human PKC gene family. PKC proteins are classified into
conventional PKCs (cPKC; α, β, and γ), novel PKCs (nPKC; ε, δ, θ, and η) and
atypical PKCs (aPKC; ζ and ι). cPKCs require Ca2+ and diacylglycerol (DAG)
for activation, nPKCs are Ca2+ independent and aPKCs require neither
Ca2+ nor DAG for activation.

antigen 1), and CD45 (Freiberg et al., 2002). Effective T cell stim-
ulation is characterized by the recruitment of PKCθ to the SMAC
(Schaefer et al., 2004), at which it is phosphorylated by LCK at
Tyr-90 (Liu et al., 2000). A physical interaction of PKCθ with the
cytoplasmatic tail of CD28 has been shown to be essential in this
recruitment mechanism (Kong et al., 2011). Subsequently, PKCθ is
phosphorylated at different sites (Bauer et al., 2001; Bi et al., 2001;
Liu et al., 2002; Freeley et al., 2005; Lee et al., 2005) and autophos-
phorylated at Thr-219 (Thuille et al., 2005). Recently, Chuang et al.
(2011) identified the MAP4K3 GCK-like kinase (GLK) as a kinase
that directly phosphorylates PKCθ at Thr-538 which is essential
to activation of NF-κB in T cells. Phosphorylation is important
to retain PKCθ in the immunological synapse, in which one of its
functions seems to be the regulation of the immunological synapse
itself. Through the live imaging of components of the immuno-
logical synapse, the synapse has been shown to be dynamic
in wild-type mice but more stable in PKCθ-knockout mice,
which influences the strength, duration and location of signals
(Dustin, 2008).

RECRUITMENT AND ACTIVATION OF SIGNALING MOLECULES
Another important role of PKCθ is to recruit and activate sig-
naling molecules, such as phospholipase C (PLC), IL2-inducible
T cell kinase (ITK), TEC, phospholipase C γ 1 (PLCγ1), and SPAK
(a MAPKKK that ultimately activates AP1) to the immunolog-
ical synapse. PKCθ was identified to play a critical role in the
NF-κB and Ca2+/NFAT pathways to activate the IL-2 promoter.
Antigen binding to the TCR leads to an increase in intracel-
lular Ca2+, which activates calcineurin. Calcineurin dephos-
phorylates NFAT and leads to its nuclear import. Subsequently,
NFAT forms complexes with the AP-1 protein transcription fac-
tor family and regulates the expression of IL-2 by binding to
its promoter. PKCθ-knockout T cells were first described by

FIGURE 2 | Involvement of individual PKC family members in different
aspects of T cell biology. Numerous studies identified PKC
isotype-selective functions in signaling pathways, necessary for full T cell
activation, differentiation and robust immune responses in vivo (for details
see text). The dashed line depicts PKC functions which were characterized
primarily via overexpression/knockdown studies in immortalized cell lines,
while a validation in a more physiological system is pending.

Sun et al. (2000). They generated PKCθ-knockout mice by replac-
ing the exon encoding the ATP-binding site of the kinase domain
with the neomycin resistance gene. In their study they found
strongly reduced proliferation of PKCθ−/− CD3+ T lympho-
cytes accompanied by a reduced secretion of IL-2. Suitably they
could show that TCR-initiated NF-κB activation was absent from
PKCθ−/− CD3+ T lymphocytes but was normal in thymo-
cytes indicating that PKCθ is essential for TCR-mediated T cell
activation (Sun et al., 2000).

Pfeifhofer et al. (2003) generated a conditional PKCθ-knockout
mouse by using Cre-mediated recombination where the complete
coding sequences of exons 3 and 4 are deleted, followed by a
frame shift mutation between exons 2 and 5. Additionally to the
results Sun et al. (2000) observed, they saw that a deficiency of
PKCθ abrogates NFAT transactivation after CD3/CD28 stimula-
tion. In addition, decreased intracellular Ca2+ flux was observed
(Pfeifhofer et al., 2003).

To induce and maintain the complete IL-2-producing capac-
ity of a T cell after TCR stimulation and activation of CD28, the
RING (really interesting new gene)-type E3 ubiquitin ligase Cbl-b
must be inhibited. Cbl-b restricts activation of the TCR by inhibit-
ing the activation of PI3K (phosphoinositide-3-kinase; Fang and
Liu, 2001) and PLCγ1 (Heissmeyer et al., 2004; Jeon et al., 2004),
and it promotes the antigen-induced downregulation of the TCR
(Naramura et al., 2002). In response to the stimulation of CD28,
Cbl-b is ubiquitinylated and proteasomally degraded. Gruber et al.
(2009a) showed that PKCθ directly regulates the ubiquitinylation
and degradation of Cbl-b. After co-stimulation of the TCR and
CD28, Cbl-b was degraded in wild-type CD3+ T cells but not
PKCθ-deficient CD3+ T cells, and the ubiquitinylation of Cbl-b
was strongly decreased after treatment with an inhibitor of PKCθ
(Gruber et al., 2009a).
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Figure 1.5 Notch Signaling Pathway 
 
A. Structural representation of Notch receptors and their ligands. All receptors contain an 
extracellular domain with EGF-like repeats, the LIN domain for heterodimerization, 
RAM domain and ankyrin repeats for binding proteins and PEST domain for protein 
degradation. Notch3 and Notch4 lack a transcriptional activation domain (TAD). All 
ligands contain EGF-like repeats and a conserved DSL sequence. Jagged ligands have an 
additional cysteine rich (CR) domain. B. Canonical Notch Signaling. After fucosylation 
in the ER, Notch transits into the Golgi where it is cleaved at the S1 site by a furin-like 
protease. This leads to the expression of a non-covalently linked hetero-dimeric receptor 
on the cell surface. Following ligand binding, a second cleavage at the S2 site by an 
ADAM protease leads to the shedding of the extracellular domain. Following 
ubiquitination, the rest of the receptor is endocytosed and cleaved at the S3 site by a γ-
secretase. This releases the intracellular, active domain of Notch, which migrates into the 
nucleus and interacts with CSL/RBP-Jκ, previously associated with co-repressors (CoR). 
Recruitment of co-activators (CoA) converts CSL to an activator of transcription leading 
to transcription of target genes. Adapted from Osborne and Minter, 2007. 
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Figure 1.6 NF-κB Signaling Pathway 
 
A. Structure of NF-κB subunits. All subunits share an approximately 300 amino acid-
long DNA binding and dimerization domain that is termed the REL homology domain 
(RHD). RelA, RelB and c-Rel all contain carboxy-terminal transactivation domains 
(TADs), and RelB has an amino-terminal leucine zipper (LZ)-like motif. p52 and p50 are 
derived from proteolysis of their precursor proteins p100 and p105, respectively (not 
shown). Adapted from Perkins, 2012. B. TCR signaling pathway used in mature T cells 
to activate NF-κB. Antigen-MHC and CD80 or CD86 binding to the TCR and CD28, 
respectively, engage and activate kinase signaling cascades (Fyn-PI(3)K, PDK1 and 
PKCθ) that through the recruitment of a specific signaling adaptor network involving the 
CMB complex, TRAF (TRAF2 and TRAF6) and TAB (TAB1 and TAB2) proteins, 
activates the canonical NF-κB pathway via the TAK1-dependent phosphorylation of 
IKKβ. Adapted from Gerondakis et al., 2014. 
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Figure 1.7 CXCR4 Signaling Pathway  
 
CXCR4 signaling in T cells. When CXCR4 binds to CXCL12 (or SDF-1), it induces a 
conformational change of CXCR4/G-proteins and triggers GPCR signaling through 
PI3K/Akt, PLC/IP3, and ERK1/2 pathways, thus regulating cell survival, proliferation, 
and chemotaxis. Beta-arrestin pathway can be activated through GRK to internalize 
CXCR4. Adapted from Wurth et al., 2014. 
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Figure 1.8 Signaling Pathway Cross Talk in T cells 
 
An overview on potential steps downstream of TCR signaling where the Notch, NF-κB, 
and PKCθ pathways are interacting. Adapted from Gerondakis et al., 2014 and Osborne 
and Minter, 2007. 
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Figure 1.9 Biogenesis of microRNAs 
 
Biogenesis pathways of microRNAs. In the canonical miRNA biogenesis pathway, the 
pri-miRNA is processed by DGCR8/Drosha microprocessor to generate pre-miRNA. In 
non-canonical miRNA biogenesis pathway, pre- miRNA is generated from small intronic 
miRNA, mirtron, through spliceosome splicing and then lariat-mediated debranching. 
Exportin 5 transports the pre-miRNA that derived from either canonical miRNA or 
mirtron from the nucleus into the cytoplasm. In the cytoplasm, the pre-miRNA is further 
processed by Dicer to generate miRNA/miRNA duplex, which is then loaded into 
Argonaute protein and forms RISC together with Dicer and TAR RNA binding protein 
(TRBP). miRNA regulates the expression its target genes through either translation 
inhibition or mRNA degradation/cleavage depending on the complimentary with its 
target mRNA. Adapted from Dai and Ahmed, 2011. 
  

Figure 1. miRNA biogenesis and action in animal cells
Mature miRNAs are short (with average about 22 nts long), single stranded RNA molecules
derived from long primary transcripts, pri-miRNAs through sequential processing in both
the nucleus and cytoplasm. In the canonical miRNA biogenesis pathway, the pri-miRNA is
processed by DGCR8/Drosha microprocessor to generate pre-miRNA. The 33nts lower stem
loop structure, the terminal loop, and the two single stranded segments flanking the hairpin
loop in pri-miRNA are together required for the binding of pri-miRNA with DGCR8 and
Drosha cleavage at the accurate site . In non-canonical miRNA biogenesis pathway, pre-
miRNA is generated from small intronic miRNA, mirtron, through spliceosome splicing and
then lariat-mediated debranching. Exportin 5 transports the pre-miRNA that derived from
either canonical miRNA or mirtron from the nucleus into the cytoplasm. In the cytoplasm,
the pre-miRNA is further processed by Dicer to generate miRNA/miRNA* duplex, which is
then loaded into Argonaute protein and forms RISC together with Dicer and TAR RNA
binding protein (TRBP). Although both strands of miRNA/miRNA* duplex have the

Dai and Ahmed Page 23
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Figure 1.10 PD-1/PD-L1 Signaling Axis 
 
A. PD-1 signaling in T cells. PD-1 signaling dephosphorylates proximal signaling 
molecules and augments PTEN expression, inhibiting PI3K and AKT activation. The 
consequences include decreased T cell proliferation, cytokine production and cell 
survival. Adapted from Riella et al., 2012. B. B7-1:PD-L1 interaction expands pathways 
in the B7:CD28 family. PD-L1 and B7-1 productively interact on T cells and can deliver 
bidirectional inhibitory signals. PD-L1:B7-1 binding may not only deliver signals when 
ligated, but may also serve to segregate binding away from previously identified 
receptors (PD-1, CD28, CTLA-4). IgV-like regions are depicted in blue and IgC-like 
regions in green, while tyrosine-containing signaling motifs are depicted by Ys. Adapted 
from Keir et al, 2008.  
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CHAPTER 2 

 

PKCθ  ACTS UPSTREAM OF NOTCH1 TO CONTRIBUTE TO THE 

PATHOGENESIS ASSOCIATED WITH APLASTIC ANEMIA 

 

2.1 Introduction 

 

Severe aplastic anemia (AA) is a rare acquired bone marrow failure (BMF) 

syndrome. At the time of diagnosis, patients often present with low levels of circulating 

platelets, white and red cells, and a characteristic hypocellular bone marrow (Young et 

al., 2008).  Immune-mediated destruction of hematopoietic stem and progenitor cells, 

together with compromised stromal cell integrity in the bone marrow, leads to peripheral 

pancytopenia and leaves patients susceptible to bleeding episodes, infection, and hypoxia 

(Chen et al., 2005; Young et al., 2008). Most cases of AA are of unknown etiology and, if 

left untreated, can be fatal (Dezern and Brodsky, 2011).  

The clinical observation that the majority of AA patients respond to 

immunosuppressive therapy underscores an autoimmune mechanism driving disease 

progression (Young et al., 2006). Evidence points to autoreactive T helper type-1 (Th1) 

lymphocytes as instrumental in mediating disease. Circulating T cells from patients with 

AA express increased levels of the Th1 transcriptional regulator, T-BET (Solomou et al., 

2006), as well as intracellular NOTCH1, which directly regulates T-BET expression 

(Roderick et al., 2013). In the diseased bone marrow, elevated levels of proinflammatory, 

Th1-associated cytokines, IFNγ and TNF, suppress hematopoiesis and damage stromal 
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cells lining the hematopoietic niches through by-stander effects (Chen et al., 2004; 

Giannakoulas et al., 2004; Sloand et al., 2002; Young, 1987; Young et al., 1987; 

Zoumbos et al., 1985). Approximately 30% of newly-diagnosed patients do not respond 

to a single round of immunosuppressive therapy. Thus, new studies aimed at elucidating 

the cellular mechanisms at work in AA are critically important to identify novel 

therapeutic targets. 

Full T cell activation is a sequential process. It is initiated when the T cell 

receptor (TCR) binds antigen displayed on an antigen presenting cell; a second signal is 

delivered when the T cell co-receptor, CD28, engages its cognate ligand, also found on 

the APC. Subsequently, cytokines generated in response to antigenic stimulation further 

act on T cells to drive their proliferation and differentiation. Protein kinase C-theta 

(PKCθ) is a novel member of the PKC family of kinases. Its activity, which is central to 

T cell signaling, is Ca2+-independent (Ono et al., 1988).  Following T cell stimulation, 

PKCθ is activated through phosphorylation by germinal center kinase (GSK)-like kinase 

(GLK; Chuang et al., 2011), a process that can be successfully inhibited 

pharmacologically, using the PKCθ inhibitor, rottlerin (Springael et al., 2007).  Physical 

redistribution of phosphorylated PKCθ within the fluid domains of the cell membrane 

results in its accumulation at the APC-T cell interface, where it facilitates assembly of a 

macromolecular signaling aggregate, known as the CARMA1-BCL10-MALT1 (CBM) 

complex (Sommer et al., 2005; Sun et al., 2000). CBM assembly is an integral step in the 

signaling process that links TCR engagement to gene transcription critical for T cell 

survival, proliferation, and differentiation (Matsumoto et al., 2005; Wang et al., 2004). 
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Together with PKCθ, the transmembrane receptor, NOTCH1, has been shown to 

be indispensable for assembly of the CBM complex, suggesting PKCθ and NOTCH1 

function within intersecting signaling pathways (Shin et al., 2014). In mammals, the 

NOTCH family comprises four cell surface receptors (NOTCH1-4) that are critical 

regulators of cell fate acquisition in multiple cell types, including T cells during 

thymocyte development (Deftos and Bevan, 2000; Osborne and Minter, 2007). In mature 

T cells NOTCH1 mediates survival, proliferation, differentiation, and cytokine 

production in response to antigenic stimulus (Adler et al., 2003; Osborne and Minter, 

2007; Palaga et al., 2003; Zhang et al., 2011). A role for aberrant NOTCH signaling in 

autoimmune disease, including AA, is also emerging (reviewed in Palaga and Minter, 

2013; Roderick et al., 2013). 

How PKCθ may contribute to T helper cell-mediated processes remains 

controversial. Reports suggest PKCθ is required for Th2 and Th17 responses, but it has 

been shown to be dispensable for generating Th1-mediated antiviral, as well as memory, 

T cell responses (Kwon et al., 2012; Marsland et al., 2005; Marsland et al., 2004). 

Accumulating evidence supports a function for PKCθ in mediating autoimmune 

disorders, such as experimental autoimmune encephalomyelitis, rheumatoid arthritis, and 

myosin-induced autoimmune myocarditis (Healy et al., 2006; Marsland et al., 2007; 

Salek-Ardakani et al., 2005; Tan et al., 2006).  Furthermore, in a mouse model of graft-

versus-host disease (GVHD), which has a strong Th1 component, PKCθ was required to 

induce GVHD pathology, but not to clear viral pathogen or residual leukemic cells 

(Valenzuela et al., 2009). These data suggest that inhibiting PKCθ in T cells may 

abrogate their pathogenic activity, while preserving their ability to respond appropriately 
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to infectious stimuli. Our lab has previously shown that PKCθ is necessary for the 

development of AA in a mouse model of disease (Roderick, unpublished).  Also, 

theraputically treating mice induced with AA with rottlerin ameliorates disease symptoms 

(Roderick, unpublished). As such, PKCθ may represent an attractive target for 

modulating immune-mediated conditions. 

We tested the hypothesis that PKCθ is critical driver of AA pathogenesis. Using 

an established mouse model of AA shown in (Roderick et al., 2013), we demonstrate that 

phosphorylated PKCθ (pPKCθ) is elevated in spleen- and bone marrow-infiltrating T 

cells of AA mice, but not of control animals. Mechanistically, we show interfering 

temporally with PKCθ signaling differentially affects the expression of the intracellular 

domain of NOTCH1 (NOTCH1IC) in murine CD4+ and CD8+ T cells. Abrogating PKCθ 

activity, pharmacologically or genetically, reduced NOTCH1IC and IFNγ expression. 

Finally, we highlight the clinical relevance of our findings by demonstrating increased 

levels of phosphorylated PKCθ in peripheral blood samples from AA patients, which we 

show respond to in vitro rottlerin treatment by down-regulating NOTCH1IC expression 

and IFNγ production. Collectively, our findings reveal PKCθ is an important contributor 

to AA pathogenesis through its regulation of the NOTCH1 signaling axis. 
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2.2 Results 

 

2.2.1 Mice with aplastic anemia express high levels of pPKCθ in T cells 

 

Phosphorylated PKCθ (pPKCθ) is required for full T cell activation (Liu et al., 

2002). As we began our investigation of how PKCθ might contribute to bone marrow 

failure, our progress was hampered by the fact that the small number of cells recovered 

from the bone marrow of AA mice, or even from patients’ peripheral blood, limits the use 

of immunoblotting as a means of evaluating protein expression. Therefore, we used 

conventional immunoblotting methods to validate a flow cytometric approach for 

determining levels of pPKCθ (Figure 2.1, A and B), then examined the expression of 

pPKCθ in T cells that mediate disease in a mouse model of AA (Roderick et al., 2013). 

Using flow cytometry, we assessed pPKCθ expression in CD4+ and CD8+ T cells both in 

the bone marrow and spleens of AA mice.  Compared to control mice, which only receive 

γ−irradiation, there is significantly more pPKCθ expression in CD4+ and CD8+ cells in 

the bone marrow of AA mice on day 17 of the disease course (Figure 2.1, C and D).  This 

observation extended to the spleens of diseased mice whose CD4+ and CD8+ T cells also 

showed increased pPKCθ, compared to T cells from γirradiated control mice (Figure 2.1, 

E and F).  These data indicate that T cells infiltrating the bone marrow and spleens of AA 

mice express high levels of pPKCθ expression at the peak of disease. 
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2.2.2 PKCθ acts upstream of and is necessary for NOTCH1IC and IFNγ  expression 

in stimulated T cells 

 

Individually, NOTCH1 and PKCθ have been shown to be essential for successful 

activation of T cells after stimulation through the TCR and the CD28 co-receptor (Adler 

et al., 2003; Eagar et al., 2004; Helbig et al., 2012; Palaga et al., 2003; Sun et al., 2000). 

Earlier studies showed treating peripheral blood mononuclear cells (PBMCs) from AA 

patients, in vitro, with the PKCθ inhibitor, rottlerin, decreased T-BET expression, a 

critical Th1 transcription factor frequently overexpressed in patients with AA (Solomou 

et al., 2006). We showed previously that intracellular NOTCH1 (NOTCH1IC) is increased 

in PBMCs from AA patients, and can be detected bound to the promoter of TBX21, 

which encodes T-BET (Roderick et al., 2013). We therefore asked whether PKCθ might 

function upstream of NOTCH1 during T cell activation. We stimulated WT murine T 

cells in the absence or presence of rottlerin, or we stimulated PKCθ-/- T cells alone, and 

assessed levels of intracellular NOTCH1IC using flow cytometry (Roderick et al., 2013).  

T cells stimulated in the presence of rottlerin showed significantly reduced median 

fluorescence intensity (MFI) of NOTCH1IC, both in CD4+ (Figure 2.2A) and CD8+ T 

cells (Figure 2.2C).  We noted similar decreases in NOTCH1IC when T cells isolated 

from PKCθ-/- mice were stimulated under similar conditions (Figure 2.2, B and D). 

In the earlier study, treating AA patient samples with rottlerin in vitro also 

reduced their capacity to produce IFNγ (Solomou et al., 2006). Since NOTCH1 has been 

shown to directly regulate IFNγ expression in murine T cells (Shin et al., 2006), we used 

IFNγ as a biological readout to ask whether inhibiting PKCθ affects NOTCH1-mediated 
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IFNγ secretion. Compared to DMSO-treated cells, abrogating PKCθ activity with 

rottlerin significantly reduced IFNγ  in CD4+ (Figure 2.2E) and CD8+ T cells (Figure 

2.2G), as measured by intracellular cytokine staining. We also observed low levels of 

IFNγ in stimulated PKCθ-/- CD4+ and PKCθ-/-CD8+ T cells (Figure 2.2, F and H). 

Altogether, these results provide evidence that PKCθ acts upstream of NOTCH1 to 

positively modulate its expression, as well as the production of the NOTCH1-regulated, 

pro-inflammatory cytokine, IFNγ. 

 

2.2.3 Differential requirements of PKCθ for NOTCH1IC expression in stimulated 

CD4+ and CD8+ T cells 

 

We recently demonstrated a physical interaction between PKCθ and NOTCH1 

that occurs within 3 hours of T cell activation (Shin et al., 2014). In the present study, we 

sought to better understand the extended temporal requirements of PKCθ activity on 

NOTCH1IC expression. Specifically, we wanted to know whether inhibiting 

PKCθ expression when T cells are activated affects NOTCH1IC expression. If so, are 

these effects long-lived and, importantly, for therapeutic considerations, what are the 

effects on NOTCH1IC expression when we perturb PKCθ signaling well beyond T cell 

activation? To answer these questions, we isolated WT T cells and cultured them with 

plate-bound anti-CD3ε and anti-CD28 under one of the following conditions: i) with 

rottlerin added to culture medium at time of plating, ii) with rottlerin added at the time of 

plating, but removed from cells when fresh medium was added 24 hours later, or iii) with 

rottlerin added 24 hours after T cells were seeded into antibody-coated wells. DMSO was 
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added to control wells under identical conditions as a vehicle control. We harvested cells 

at 24-hour time points over a 96-hour culture period and utilized flow cytometry to assess 

NOTCH1IC expression and intracellular IFNγ in CD4+ and CD8+ T cells. When rottlerin 

was added at the time of T cell stimulation, NOTCH1IC expression both in CD4+ (Figure 

2.3A left panel) and CD8+ T cells (Figure 2.3B, left panel) was significantly lower, 

compared to DMSO-treated cells.  We observed similarly-low levels of IFNγ in 

stimulated CD4+ (Figure 2.3C, left panel) and CD8+ cells (Figure 2.3D, left panel) treated 

with rottlerin, compared to those cultured with DMSO. These data suggest PKCθ 

signaling at the time of T cell activation positively modulates NOTCH1IC expression as 

well as IFNγ production. 

We next asked whether inhibiting PKCθ signaling at the time of T cell stimulation 

had durable effects on NOTCH1IC signaling.  We found that even after removing 

rottlerin-containing medium and replacing it with fresh medium 24 hours later, CD4+  

(Figure 2.3A, center panel) and CD8+ T cells (Figure 2.3B, center panel) exposed to 

rottlerin during stimulation exhibited significantly less NOTCH1IC compared to DMSO 

treated controls. CD4+ (Figure 2.3C, center panel) and CD8+ T cells (Figure 2.3D center 

panel) cultured under these conditions also produced less IFNγ. These results indicate 

blocking PKCθ signaling, even for relatively short durations at the time T cells are 

stimulated, has long-lasting effects on NOTCH1IC expression and its downstream targets, 

including IFNγ. 

Finally, we assessed the extent to which blocking PKCθ signaling as late as 24 

hours after T cell activation affects NOTCH1IC expression and IFNγ production. To our 

surprise, when T cells were stimulated for 24 hours before rottlerin was added to cultures, 



www.manaraa.com

	  

	   58	  

we observed a significant decrease in NOTCH1IC in CD8+ (Figure 2.3B, right panel) but 

not in CD4+ T cells (Figure 2.3A, right panel). Consistent with its effects on NOTCH1IC 

expression, blocking PKCθ 24 hours after T cell activation also inhibited IFNγ 

production in CD8+ (Figure 2.3D, right panel) but not in CD4+ T cells (Figure 2.3C, right 

panel). Altogether, these data reveal CD4+ and CD8+ T cells exhibit a differential 

requirement for PKCθ signaling during NOTCH1IC induction and IFNγ production. We 

conclude that CD8+ T cells require uninterrupted PKCθ signaling to maintain NOTCH1IC 

expression. It would seem CD4+ T cells do not have this same degree of stringency, since 

they are able to maintain NOTCH1IC expression as long as PKCθ is present at the time of 

activation. These data have important clinical ramifications, since they support the notion 

that interrupting PKCθ signaling in activated CD8+ T cells may further disrupt 

NOTCH1IC expression and IFNγ production, to potentially attenuate disease symptoms. 

 

2.2.4 Peripheral T cells from patients with AA express high levels of pPKCθ which 

respond to rottlerin treatment by downregulating NOTCH1IC and IFNγ 

 

PBMCs from patients with AA express elevated levels of Th1-associated proteins, 

including T-BET and Rottlerin treatment decreased T-BET expression and IFNγ 

secretion (Solomou et al., 2006). Moreover, we previously noted increased expression of 

NOTCH1IC in peripheral T cells from AA patients, and demonstrated that it was enriched 

at the promoter that regulates T-BET (Roderick et al., 2013). Intrigued by these 

overlapping findings, we asked whether Rottlerin treatment also affected NOTCH1IC 

expression in AA patient samples. We used flow cytometry to evaluate the level of 
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active, phosphorylated PKCθ (pPKCθ) in unmanipulated PBMCs from a cohort of AA 

patients who had not received prior treatment. Compared to healthy controls, the PBMCs 

of patients with untreated AA expressed significantly higher levels of pPKCθ both in 

CD4+ and CD8+ T cells (Figure 2.4, A and B). We investigated whether these cells would 

respond to PKCθ inhibition by down-regulating NOTCH1IC expression, as we had 

observed with murine T cells. We seeded PBMCs from healthy donors, or from patients 

with untreated AA, into tissue culture wells pre-coated with antibodies specific for CD3ε 

and CD28, and cultured cells for 72 hours in the presence of rottlerin or DMSO, as 

vehicle control. We determined that both in CD4+ and CD8+ T cells of AA patients, 

NOTCH1IC levels were significantly lower after rottlerin treatment, compared to those 

treated with DMSO (Figure 2.4, C and D).  This reduced NOTCH1IC expression could 

also be seen in healthy PBMC controls suggesting that, although AA patient samples 

express significantly higher levels of pPKCθ, the PKCθ expressed responds equivalently 

to the actions of rottlerin. 

As a biological readout of NOTCH1IC activity, we quantified IFNγ production by 

stimulating PBMCs from healthy controls or from patients with AA, treated with DMSO 

or rottlerin. PBMCs from both cohorts responded to rottlerin treatment by secreting 

significantly less IFNγ into culture supernatants (Figure 2.4E), compared to DMSO-

treated controls, indicating Rottlerin can effectively reduce the expression of key 

inflammatory proteins associated with AA pathology. Consistent with the increased 

expression of pPKCθ we noted in AA mice, we noted pPKCθ is also expressed at high 

levels in patients with AA who have not received prior IST. Furthermore, PBMCs from 
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patients are not refractory to Rottlerin treatment but rather respond by down regulating 

both NOTCH1IC expression and IFNγ secretion. 

 

2.3 Discussion 

 

Phosphorylated PKCθ is elevated in T cells from mice and patients with AA. 

Furthermore, we identify a specific requirement for PKCθ in CD8+ T cells, but not in 

CD4+ T cells to drive IFN-γ.  High levels of pPKCθ observed in human patient samples 

responded to rottlerin treatment by reducing levels of NOTCH1IC expression and IFNγ, 

two pro-inflammatory proteins that are frequently expressed in patients with AA 

(Roderick et al., 2013, Solomou et al, 2006). 

Our results firmly place PKCθ upstream of NOTCH1IC accumulation, following T 

cell stimulation.  Cross-talk between the NOTCH and PKC families has been reported in 

multiple systems. Signaling pathways mediated by PKCα and NOTCH4 converge in 

some instances of endocrine resistant breast cancer (Yun et al., 2013). Earlier reports 

have shown synergistic activities between PKCθ and NOTCHIC in T cell acute 

lymphoblastic leukemia models induced by cells containing activating NOTCHIC 

mutations (Felli et al., 2005; Giambra et al., 2012). However, how PKCθ functions to 

modulate NOTCH1 activation in normal, mature T cells remains ill-defined. In this study, 

inhibiting PKCθ signaling at the time of TCR stimulation revealed a previously 

undescribed requirement for this PKC family member, acting upstream of NOTCH1IC 

and modulating its expression. 
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These results extend and inform previous observations by Solomou et al. In that 

report, treating PBMCs from AA patients with the PKCθ inhibitor, rottlerin, reduced 

levels of the Th1 transcriptional regulator, T-BET, as well as the pro-inflammatory 

cytokine, IFNγ. However, pPKCθ levels were not measured directly in that study, so it 

remained unclear whether and how PKCθ might be acting to modulate T-BET and IFNγ 

expression. In our present study, we directly measure pPKCθ, and show it is robustly 

expressed in PBMCs from patients with AA. In agreement with Solomou’s observations, 

patient PBMCs responded to Rottlerin treatment by downregulating IFNγ production. We 

further demonstrate here, an as yet unreported effect of rottlerin on AA patient samples, 

which is to attenuate NOTCH1IC expression following stimulation with anti-CD3ε and 

anti-CD28. We recently showed that NOTCH1IC is elevated in patients with AA, and can 

be found bound to the Tbx21 promoter, which codes for T-BET (Roderick et al., 2013). 

In addition, we previously reported that NOTCH1 binds to and positively regulates the 

ifng promoter in mice (Shin et al., 2006). These observations, together with the results of 

our current study, prompt us to propose a unifying mechanism whereby PKCθ modulates 

NOTCH1IC expression which, in turn, acts to regulate T-BET and IFNγ expression. 

Solomou et al. (2006) also identified T-BET bound to the IFNγ promoter in patients with 

AA. In this regard, therapeutic strategies which target PKCθ may prove to be 

exceptionally beneficial in reducing IFNγ expression in AA patients, since the collective 

data suggest it would decrease both T-BET and NOTCH1 expression, to effectively 

interrupt Ifng transcription. 

Accumulating experimental evidence supports the notion that PKCθ signaling is 

complex and a strict requirement for its activity in CD4+ vs CD8+ T cells is likely 
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context-dependent (Marsland and Kopf, 2008). PKCθ is differentially required by CD4+ 

and CD8+ T cells to convey survival signals, in vitro, with PKCθ-/- CD8+ T cells showing 

a marked survival defect that only moderately affects PKCθ-/- CD4+ T cells (Saibil et al., 

2007). We demonstrated that using rottlerin to inhibit PKCθ activity in CD4+ and CD8+ T 

cells 24 hours after stimulation resulted in differential effects on NOTCH1IC expression. 

While NOTCH1IC expression in CD4+ T cells appeared to be less influenced by PKCθ 

inhibition, CD8+ T cells required uninterrupted PKCθ activity to maintain NOTCH1IC 

expression. How exactly PKCθ influences NOTCH1IC accumulation in CD8+ T cells is 

under further investigation. TCR engagement, together with signals conveyed through the 

CD28 co-receptor, triggers an activation cascade in T cells that requires PKCθ and 

NOTCH1 (Shin et al., 2014). These amplified signals culminate in the nuclear 

translocation of transcription factors belonging to the NF-κB family, which are normally 

sequestered in an inactive complex in the cytosol of resting T cells. Other groups have 

shown that translocation from the cytosol to the nucleus of one of these transcription 

factors, c-Rel, is required for CD8+ T cell activation (Deenick et al., 2010). We 

previously demonstrated that preventing NOTCHIC accumulation, using a 

pharmacological inhibitor of NOTCH activation, markedly reduced the nuclear 

accumulation and DNA-binding ability of c-Rel. Inhibiting NOTCHIC in murine T cells 

also abrogated NOTCH1 and c-Rel binding to the Ifng promoter (Shin et al., 2006). Thus, 

it is intriguing to speculate that inhibiting PKCθ may be acting upstream of NOTCH1 to 

regulate IFNγ expression through this mechanism. The diminution of IFNγ production by 

CD8+, but not CD4+ T cells, treated with rottlerin 24 hours after stimulation certainly 

lends credence to this model. 
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How PKCθ functions during T helper cell differentiation to mediate specific 

immune responses has been the subject of debate. PKCθ has been shown to be 

dispensable for Th1 immune reactions in response to pathogen infection (Marsland et al., 

2005; Marsland et al., 2004). On the other hand, PKCθ deficiency is protective against 

autoimmune models with a pathogenic Th1 component, such as some the mouse models 

of EAE, Th1 dependent antigen induced arthritis, and autoimmune myocarditis 

(Anderson et al., 2006; Healy et al., 2006; Kwon et al., 2012; Marsland et al., 2007; 

Salek-Ardakani et al., 2005; Tan et al., 2006). Studies suggest in some of these disease 

models, especially EAE, PKCθ is also required to facilitate a pathogenic Th17 response 

that is responsible for a significant portion of central nervous system destruction 

(Rostami and Ciric, 2013). Th17 cells have been identified in AA patients; however, their 

contribution to disease pathology has not been extensively explored (de Latour et al., 

2010). Nonetheless, whether PKCθ is important for development of Th1 or Th17 cells, or 

both, its therapeutic targeting might provide a means of interrupting the differentiation of 

these pro-inflammatory T cell subsets during AA progression. 

A curative treatment for patients with AA is a bone marrow transplant (BMT) 

from a donor who shares high genetic similarity, preferably a sibling. A significant 

clinical obstacle to wider use of BMT, for treating AA patients as well as patients with 

other hematological malignancies, is the risk of developing a serious post-transplant 

condition known as graft-vs-host disease (GVHD). A recent elegant study identified 

PKCθ as necessary to drive the pathogenesis associated GVHD (Valenzuela et al., 2009). 

The authors suggested PKCθ may function to lower the threshold of T cell activation. 

They further showed that in the presence of high affinity peptides or increasing doses of 
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low affinity peptides, T cells deficient for PKCθ could be fully stimulated. In the absence 

of PKCθ, T cells were unable to respond to the low affinity of the mismatched 

MHC/antigens, and this suboptimal stimulation contributed to their inability to expand 

and mediate disease in vivo. However, CD8+ T cells were able to bind high affinity 

bacterial pathogens, presumably enabling them to overcome the lack of PKCθ, and clear 

the infection. We noted a similar lack of T cell expansion in AA mice whose BMF was 

induced with PKCθ-/- splenocytes (Roderick, unpublished). Furthermore, our observation 

that PKCθ was specifically required in CD8+ T cells to mediate BMF is completely 

consistent with the findings and interpretation provided by Valenzuela and colleagues 

(Roderick, unpublished). 

In this scenario inhibiting PKCθ, even for a relatively short duration, may deprive 

T cells of the amplifying signal needed to respond productively to the low affinity 

stimulus of self-antigens. Finally, it is possible that  PKCθ may be regulating strength of 

signal through the activation of NOTCH1, since studies showed NOTCH1 can regulate 

TCR signal strength in thymocytes, as well as in mature T cells (Dongre et al., 2014; Izon 

et al., 2001). Additional studies are required to understand the exact mechanisms at work 

in our model and how they may be further extrapolated to patients with AA. 
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Figure 2.1 T cells from AA mice express elevated pPKCθ 
 
F1 hybrid mice were irradiated only (γIR controls) or induced with AA (BMF) and 
harvested 17 days after disease induction. pPKCθ expression was determined in (A, C) 
CD4+ and (B, D) CD8+ T cells isolated from (A, B) bone marrow and (C, D) spleen. Data 
are the mean + SEM of three independent experiments. *P < 0.05, **P < 0.01; unpaired 
student’s t test. 
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Figure 2.2 PKCθ acts upstream of NOTCH1IC and IFNγ  expression 
 
We used flow cytometry to assess NOTCH1IC expression in WT (A) CD4+ and (C) CD8+ 
T cells treated with DMSO or rottlerin and in (B) CD4+ and (D) CD8+ T cells from 
PKCθ-/- mice stimulated 48 hours with anti-CD3ε and anti-CD28. IFNγ expression in 
DMSO- or rottlerin-treated (E) CD4+ and (G) CD8+ T cells or in (F) CD4+ and (H) CD8+ 
T cells from PKCθ-/- mice was also quantified using flow cytometry 48 hours after 
stimulation with anti-CD3ε and anti-CD28. Data are the mean + SEM of three 
independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001; unpaired student’s t test. 
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Figure 2.3 CD4+and CD8+ T cells show differential requirements for PKCθ   
 
(A-D) WT T cells were stimulated up to 96 hours with anti-CD3ε and anti-CD28 and 
cultured either continuously in the presence of DMSO or rottlerin (3µM; left panels), 
cultured only for the first 24 hours in the presence of DMSO or rottlerin (center panels), 
or cultured in the presence of DMSO or rottlerin that was added 24 hours after 
stimulation (right panels). Using flow cytometry we assessed (A, B) NOTCH1IC 

expression in (A) CD4+ and (B) CD8+ T cells at the indicated time points. We also used 
flow cytometry to quantify (C, D) intracellular IFNγ in (C) CD4+ and (D) CD8+ T cells at 
the time points indicated. Data are the mean + SEM of three independent experiments. *P 
< 0.05, **P < 0.01, ***P < 0.001; two way ANOVA with Bonferroni post-test applied. 
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Figure 2.4 T cells from treatment-naïve AA patients express elevated pPKCθ 
 
We used flow cytometry to assess pPKCθ expression in unmanipulated (A) CD4+ and (B) 
CD8+ T cells from healthy controls and from patients with AA who had not received 
prior IST. (C,D) Peripheral blood mononuclear cells (PBMCs) from healthy controls or 
from patients with AA were pre-treated either with DMSO or rottlerin (3µM) then 
stimulated for 72 hours with anti-CD3ε and anti-CD28. We evaluated NOTCH1IC levels 
in (C) CD4+ and (D) CD8+ T cells using flow cytometry. (E) We used ELISA to quantify 
IFNγ secretion in supernatants of cultures treated as in C and D.  n=3-6; Data are the 
mean + SEM and represent three independent experiments; *P < 0.05, **P < 0.01,  
***P < 0.001; (A, B) unpaired student’s t test, (C-E) one way ANOVA with Tukey’s 
post-test applied. 
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CHAPTER 3 
 

NF-κB PLAYS A ROLE IN DISEASE PATHOLOGY OF APLASTIC ANEMIA 

THROUGH THE REGULATION OF CXCR4 

 

3.1 Introduction 

 

Severe aplastic anemia (AA) is a rare acquired bone marrow failure (BMF) 

syndrome where autoreactive T helper type-1 (Th1) lymphocytes are instrumental in 

mediating disease. Circulating T cells from patients with AA express increased levels of 

the Th1 transcriptional regulator, T-BET (Solomou et al., 2006), and intracellular 

NOTCH1, which directly regulates T-BET expression in patient peripheral blood samples 

(Roderick et al., 2013). Because approximately 30% of newly-diagnosed patients do not 

respond to a single round of immunosuppressive therapy, it is imperative to investigate 

other pathways in the autoreactive T cells that drive disease. 

The NF-κB family of transcription factors are a family of homo- or heterodimers 

that are comprised of 5 subunits: c-Rel, p65 (RelA), RelB, p50 (NF-κB1) and p52 (NF-

κB2). p50 and p52 are processed by the precursors p105 and p100, respectively. Each 

homodimer or heterodimer has distinct expression patterns and regulatory functions, 

depending on the cell type (Gilmore, 2006).  In T cells, NF-κB is activated canonically 

after T cell stimulation. After T cell receptor activation in T cells,  active PKCθ 

phosphorylates Carma1, which is able to complex with Malt1 and BCL10 to form the 

CBM complex.  After formation of the signaling complex, NF-κB is released from IκB 

following its phosphorylation and subsequent degradation. NF-κB is able to then 
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translocate into the nucleus and mediate downstream signaling associated with T cell 

activation and differentiation such as expression of IL-2, CD25, IL-2Rα, and IFNγ 

(Vallabhapurapu and Karin, 2009). Dysregulation of NF-κB signaling has been 

associated with numerous autoimmune diseases, including rheumatoid arthritis, systemic 

lupus erythematosus, type I diabetes, multiple sclerosis, and inflammatory bowel disease 

(Sun et al., 2013). 

Chemokines are small molecules that are able to influence the motility of cells 

through binding to their cognate chemokine receptor. CXCR4 is a chemokine receptor 

that is constitutively expressed on T cells, and its main role in T cells is to drive 

migration along gradients of SDF-1, its chemokine ligand. CXCR4 can act as a 

costimulator of T cell proliferation and differentiation through its interaction with the 

TCR (Kumar et al., 2006; Molon et al., 2005). CXCR4 has also been shown to be highly 

overexpressed in many cancers, including human breast cancer cell lines and primary and 

metastatic breast tumors, ovarian cancer, prostate cancer, and melanoma (Hall and 

Korach, 2003; Kim et al., 2008; Muller et al., 2001; Taichman et al., 2002). Additionally, 

NF-κB signaling has been shown to directly regulate CXCR4 expression to promote 

breast cancer migration and metastasis (Helbig et al., 2003). Since NF-κB is important in 

T cell activation and differentiation and has been shown to drive CXCR4 expression and 

chemotaxis in cancer migration and metastasis, we asked if NF-κB drove AA 

pathogenesis through an upregulation of CXCR4. 

In this study, we show that NF-κB signaling is necessary for the development of 

AA and inhibiting its function ameliorates disease. When we blocked NF-κB signaling by 

using p50-/- to induce AA in our mouse model, we found that donor cells were unable to 
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expand in the bone marrow, spleen and peripheral blood of the recipient mice. Treatment 

of AA mice with DHMEQ, a nuclear transportation inhibitor of NF-κB, reduced the 

levels cytokines associated with AA in the serum. We could also reduce Notch1IC 

expression in T cells that were infiltrating the bone marrow of AA mice through NF-κB 

signaling inhibition. When we examined CXCR4 expression in AA mice compared to 

irradiation control mice, we found that AA mice had increased expression of CXCR4 on 

the bone marrow infiltrating T cells and when NF-κB signaling is blocked in AA mice, 

CXCR4 expression is reduced. Also, when T cells are treated with Bay-11, a IκBα 

degradation inhibitor and stimulated in a mixed lymphocyte reaction (MLR), chemotaxis 

in response to SDF-1 is severely reduced. Taken together, these data show that NF-κB 

drives AA progression through T cell activation and through not only a reduction in T 

cell activation, but also by upregulation of CXCR4 expression. 

 

3.2 Results 

 

3.2.1 Blocking NF-κB signaling abrogates AA disease progression 

 

Because NF-κΒ has been shown to be important in T cell signaling and activation, 

and it has been shown to be dysregulated in many autoimmune diseases, we wanted to 

see if it was necessary to drive pathogenesis of AA (Vallabhapurapu and Karin, 2009). 

To pharmacologically inhibit NF-κB signaling in vivo, we used two inhibitors of NF-κB 

that block signaling a different points in the pathway.  The first inhibitor, Bay-11, is an 

irreversible inhibitor of cytokine-inducible IκBα phosphorylation, therefore, it acts by 
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blocking the release of NF-κB subunits from their cytoplasmic sequestration (Pierce et 

al., 1997). The other inhibitor, Dehydroxymethylepoxyquinomicin or DHMEQ is a new 

NF-κB inhibitor that is a 5-dehydroxymethyl derivative of a novel compound 

epoxyquinomicin  and prevents nuclear translocation of NF-κB by sequestering it in the 

cytoplasm (Matsumoto et al., 2000). 

For these studies, we induced mice with AA as described previously, and one 

hour after disease induction we treated mice with DHMEQ (30 mg/kg/day), Bay-11 (5 

mg/kg/every other day), vehicle only (DMSO), or we induced recipient mice with p50-

deficient donor splenocytes (B6.Cg- Nfkb1tm1Bal/J). On day 17 post induction, mice were 

humanely euthanized to assess disease severity. Pharmacological inhibition of NF-κB in 

AA mice, with both DHMEQ and Bay-11 and genetic deletion of the p50 subunit in 

donor cells resulted in significantly increased bone marrow cellularity when cells were 

enumerated using trypan blue exclusion (Figure 3.1A) and when assessed by H & E 

staining (Figure 3.1B). Treatment of AA mice by blocking NF-κB signaling also 

increased the numbers of circulating white and red blood cells (Figure 3.1, C and D) 

compared with AA mice in all cases, therefore ameliorating the peripheral pancytopenia 

associated with disease. 

To see if the amelioration of disease symptoms was due to a reduction of 

pathogenic T cell infiltration into the bone marrow, we used flow cytometry to look at the 

percentages of CD4+ and CD8+ T cells in the bone marrow. Compared to AA mice that 

have a large percentage of T cells in the bone marrow at day 17 P.I., mice treated with 

DHMEQ, Bay-11 and p50-/- AA mice have significantly reduced numbers of CD4+ and 

CD8+ T cells in the bone marrow, at levels comparable to γ-IR control mice (Figure 
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3.1E). Next we asked whether therapeutic administration of Bay-11 prolonged the 

survival of AA mice. For these experiments, we induced mice with AA and treated mice 

with Bay-11 (5 mg/kg/every other day) or vehicle only (DMSO) from day 5 to 17 post-

disease induction at which time treatment was discontinued and disease progression was 

monitored. Compared with DMSO-treated mice for which the median survival time was 

19.5 days, mice treated with Bay-11 showed a remarkable survival benefit with four of 

seven mice fully rescued from lethal BMF (P < 0.01; Figure 3.1F). We also looked at the 

survival potential of AA mice induced with p50-/- splenocytes. Compared to mice induced 

with WT splenocytes who succumbed to disease on a median day of 20 post induction, 

mice induced with p50-/- cells did not succumb to disease and survived indefinitely 

(p=0.0339, Figure 3.1G). Taken together, these data demonstrate that NF-κB drives 

disease progression of AA. 

 

3.2.2 Mice induced p50-/- deficient cells do not develop disease because of a failure of 

cells to expand 

 

Because AA mice induced with p50-/- splenocytes never develop disease, we 

asked if the p50-deficient donor cells were able to react to alloantigens and expand in the 

recipient AA mice. To ask this question, mice were induced with AA using WT or p50-/- 

splenocytes and were harvested on days 10, 13, 15 or 17 post disease induction and donor 

cells were enumerated by assessing the percentage of H2kb+H2kd- cells in the bone 

marrow, spleen and peripheral blood by flow cytometry. In the bone marrow, there is a 

very low presence of donor cells in p50-/- AA mice present throughout the disease course; 
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however, on day 10 post induction, about 20% of cells in the bone marrow in WT AA 

mice are donor derived, while by day 17, almost half of the cells in the WT AA mice of 

donor origin (Figure 3.2A). There are slightly more donor cells in the spleen (Figure 

3.2B) and peripheral blood (Figure 3.2C) over the disease course in p50-/-
 induced AA 

mice, however, the amount is significantly reduced compared to WT induced animals. 

These data infer that p50-/-
 never become activated enough to clonally expand to a point 

where they can mediate migration to the bone marrow and drive disease. 

 

3.2.3 Inhibiting NF-κB nuclear localization decreases Th1 associated cytokine 

secretion in the plasma of AA mice 

 

 Plasma from mouse models of AA and human patients contain high amounts of 

Th1 associated cytokines (such as IFNγ and TNF) compared with healthy controls 

specimens (Young et al., 2008). NF-κB signaling has been shown to regulate the 

production of proinflammatory and Th1 associated cytokines in T cells (Vallabhapurapu 

and Karin, 2009). To see if we could ablate high cytokine levels in the plasma of AA 

mice by blocking NF-κB activation, we treated AA mice with DHMEQ or DMSO as 

described above. On day 17 post induction, mice were humanely sacrificed and plasma 

was collected from induced mice. To measure the concentration of circulating cytokines 

present in the plasma, a Cytometric Bead Array (CBA; BD Biosciences) was done to 

measure proinflammatory cytokines (IL-2 and IL-6), Th1 cytokines (TNF and IFNγ), Th2 

(IL-4), Th17 (IL-17a) and anti-inflammatory (IL-10) cytokines. When mice were treated 

with the NF-κB inhibitor DHMEQ, the proinflammatory cytokines (IL-2 and IL-6; Figure 
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3.3, A and B) and Th1 cytokines (TNF and IFNγ; Figure 3.3, C and D) were reduced in 

the serum of AA mice compared with DMSO treated controls. When we examined the 

levels of cytokines associated with other T helper subtypes, such as IL-4 (Th2), IL-17a 

(Th17), and IL-10 (Treg/anti-inflammatory), there was no difference in levels of cytokine 

production between DMSO treated and DHMEQ treated animals (Figure X, E-G). This 

implies that NF-κB signaling is needed for the production of Th1 associated cytokines in 

AA, and blocking the activation of NF-κB suppresses the cytokine storm associated with 

disease. 

 

3.2.4 Notch1IC is reduced in CD4+ cells infiltrating the bone marrow of AA mice 

when NF-κB signaling is targeted 

 

 Our lab has shown that Notch1 signaling is necessary for driving AA disease 

pathogenesis (Roderick et al., 2013). Also, we have also shown that Notch and NF-κB 

signaling interact to drive T cell activation (Shin et al., 2006; Shin et al., 2014). Because 

of this evidence, we hypothesized that blocking NF-κB signaling would reduce Notch1IC 

levels in AA mice. In mice treated with Bay-11 or induced with p50-/-
 splenocytes, the 

percentage of Notch1IC
 in both CD4+ and CD8+ T cells in the bone marrow is 

significantly decreased compared to AA controls on day 17 post induction (Figure 3.4A). 

When Notch1IC expression was examined on a per cell basis, however, Notch1IC was 

decreased in the CD4+ gate in the bone marrow only from mice induced with p50-/- 

splenocytes compared to AA controls, and did not decreased in any mice where NF-κB 

signaling was inhibited when CD8+ T cells were analyzed (Figure 3.4B). While there was 
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a decrease in the percentage of Notch1IC expressing cells in Bay-11 treated and p50-/- 

induced AA mice, DHMEQ treated AA mice have similar or higher levels of Notch1IC, 

which was not expected (Figure 3.4, A and B). This difference in Notch expression 

between the groups treated with different NF-κB signaling inhibitor could be due to the 

fact that various components of the NF-κB pathway are being targeted differently 

depending on which method is used. 

 

3.2.5 CXCR4 is differentially regulated in mice induced with AA compared to 

irradiation controls 

 

The role of CXCR4/SDF-1 signaling in the progression and dissemination of 

hematopoietic malignancies and autoimmune diseases have been well documented 

(Domanska et al., 2013). However a role for CXCR4 in the pathogenesis of the 

autoimmune disease Aplastic Anemia has not been previously explored. First, we 

assessed both the gene and protein expression of CXCR4 in T cells from the spleen and 

BM of mice induced with AA. On day 17 post-disease induction, the transcript levels of 

Cxcr4 in T cells isolated from spleen and BM of AA mice were similar to those found in 

T cells from spleens of control mice that had only been irradiated (Figure 3.5A). 

However, the protein expression of CXCR4 was significantly higher in spleen CD4+ T 

cells and BM-infiltrating CD4+ and CD8+ T cells of AA mice compared with spleen T 

cells of γ-irradiation control mice (Figure 3.5, B and C). Furthermore, compared with 

control mice, AA mice expressed CXCR4 at a significantly higher percentage in CD4+ 

and CD8+ T cells from both the spleen and the bone marrow (Figure 3.5D). Notably, of 
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those T cells that migrated to the bone marrow in AA mice, CD8+ T cells showed a 

higher expression of CXCR4 than CD4+ T cells (Figure 3.5E). These results document 

that CXCR4 expression on CD4+ and CD8+ T cells in mice induced with AA is highly 

upregulated, especially on CD8+ T cells resident in the bone marrow. 

 

3.2.6 Inhibition of NF-κB reduces expression of CXCR4 in T cells and abrogates 

their chemotaxis to SDF-1α  

 

Studies have shown that NF-κB regulates the expression of CXCR4 to promote 

migration and metastasis in a variety of malignancies such as breast cancer (Helbig et al., 

2003). Therefore, we wanted to see if blocking NF-κB signaling in our mouse model of 

AA would reduce CXCR4 expression. Therefore, we induced mice with AA and treated 

them with NF-κB inhibitors as described above. In Bay-11-treated AA mice, we detected 

CXCR4 in a significantly lower percentage of BM-infiltrating CD4+ and CD8+ T cells 

(Figure  3.6A) and the expression of CXCR4 on a per cell basis was significantly reduced 

in these cells compared with diseased animals (Figure 3.6B). In CD4+ infiltrating bone 

marrow T cells, however, AA mice treated with DHMEQ and p50-/- AA mice had no 

difference of CXCR4 expression on their infiltrating T cells. Conversely, CD8+ bone 

marrow T cells from mice where NF-κB signaling was inhibited by all methods had a 

decrease in both the percentage of CXCR4+ cells and a decreased of the expression of 

CXCR4 on a per cell basis (Figure 3.6, A and B).  These data show that in CD8+ T cells, 

CXCR4 expression can be reduced by inhibiting NF-κB signaling. 
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We next asked whether inhibition of NF-κB signaling could result in a reduction 

of SDF-1α mediated chemotaxis. To do this, we examined expression of CXCR4 in T 

cells activated in conditions resembling the interactions occurring in vivo between donor 

and recipient cells in our AA model. We set up a mixed lymphocyte reaction (MLR) 

culture in which bulk splenocytes from C57BL/6 mice were co-cultured with BMDCs 

from F1 hybrids (BALB/c X C57BL/6) and treated cultures with Bay-11 (1 µM) or 

vehicle only (DMSO) at the time of plating. We then examined the expression of CXCR4 

using flow cytometry over a 12 day period. Bay-11-treated CD4+ T cells showed 

significantly lower levels of CXCR4 on days 6 and 8 of culture compared with DMSO-

treated T cells (Figure 3.6C) Meanwhile, compared with DMSO-treated T cells, Bay-11-

treated CD8+ T cells also displayed significantly lower levels of CXCR4 at days 6, 8 and 

10 (Figure 3.6D). We then took cells from the MLR cultures on day 8 of culture and 

subjected those cells to a chemotaxis assay towards SDF-1α. We found that Bay-11-

treated CD4+ and CD8+ T cells exhibited a significantly lower chemotactic response to 

SDF-1α compared with control T cells treated with vehicle only (Figure 3.6, E and F). 

These findings indicate that inhibition of NF-κB reduces expression of CXCR4 in CD4+ 

and CD8+ T cells both in vitro and in vivo and affects their ability to migrate in response 

to SDF-1α in vitro. 

 

3.3 Discussion 

 

For the first time, we describe a role for NF-κB signaling in driving the 

immunopathogenesis of Aplastic Anemia. Using our mouse model of AA (Roderick et 
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al., 2013), we can ameliorate progression of AA using two inhibitors of NF-κB signaling, 

DHMEQ and Bay-11, and through genetic ablation of the p50 subunit of NF-κB in our 

donor cells. p50-/- splenocytes fail to expand in the AA recipient mice in both the bone 

marrow, spleen, and peripheral blood. Also, DHMEQ treatment reduces the secretion of 

Th1 associated cytokines in the serum of AA mice. Besides its classical role in T cell 

activation and differentiation, NF-κB has been shown to directly regulate CXCR4 

expression in breast cancer, thus increasing their mobility and metastasis (Helbig et al., 

2003). Therefore, we looked at the expression of CXCR4 in our mouse model of AA and 

found that CXCR4 was upregulated on BM-infiltrating T cells from AA mice, and was 

most highly expressed on the CD8+ T cells from the bone marrow. Finally, we could 

reduce the expression of CXCR4 by blocking NF-κB signaling both in vitro and in vivo, 

and could reduce the SDF-1α migration potential of T cells using the NF-κB signaling 

inhibitor, Bay11. 

Our results clearly show that NF-κB signaling drives the pathogenesis of Aplastic 

Anemia. We used three different methods to abrogate NF-κB signaling. We used two 

pharmalogical inhibitors: Bay-11, an inhibitor that blocks the degradation of IκB and the 

subsequent translocation of NF-κB into the nucleus, and DHMEQ, an inhibitor that 

blocks the translocation of NF-κB into the nucleus through unknown methods. We also 

used cells from animals that had a genetic knockout of the p50 subunit of NF-κB. Not 

surprisingly we are able to concretely show that signaling through this pathway is 

necessary for AA pathogenesis by using these three methods. Since NF-κB signaling is 

important for T cell stimulation and Th1 differentiation, its important role in AA 

pathogenesis was expected (Vallabhapurapu and Karin, 2009). Also, because our lab has 
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shown that both the Notch signaling pathway and PKCθ pathway are necessary for AA 

disease progression (Roderick et al., 2013), and both these pathways have been shown to 

interact with NF-κB to drive T cell activation, our results fit nicely with the notion that 

abberant T cell signaling downstream of the TCR in response to self antigen is driving 

disease (Shin et al., 2006; Shin et al., 2014; Sun et al., 2000). 

Since the NF-κB signaling pathway regulates multiple downstream processes in T 

cells, we wanted to elucidate which cellular mechanisms NF-κB could be affecting to 

regulate disease. NF-κB signaling has been shown to be responsible for regulating T cell 

activation and proliferation through direct regulation of cytokine production 

(Lamhamedi-Cherradi et al., 2003), and we were able to abrogate cytokine production in 

our model when AA mice were treated with the NF-κB inhibitor, DHMEQ. Additionally, 

we show here that genetically deleting the p50 subunit in donor cells ameliorate disease 

due to a failure of donor cells to expand and proliferate in the recipient while in vitro 

studies show that p50-/- T cells are able to produce similar amounts of IL-2 and IFNγ 

when stimulated through the TCR and CD28 co-receptor (data not shown). Studies have 

shown that while T cells deficient in c-Rel intrinsically have defects in IL-2 production 

and Th1 cytokine production in a diabetes model, the inability of p50-/- T cells to mediate 

disease was not through direct cytokine production, but was a through an indirect 

reduction in autoreactive T cell activation via APC stimulation (Lamhamedi-Cherradi et 

al., 2003). However, further discovery into the differential roles of the NF-κB subunits in 

different cell types responsible in AA development is required. 

Interactions between the NF-κB and Notch signaling pathways have been shown 

to be important in T cell activation (Shin et al., 2006; Shin et al., 2014). Therefore, we 
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wanted to see if a decrease in NF-κB signaling correlated with a decrease in Notch1 

activation in our AA mouse model, where Notch signaling has been shown to play an 

important role (Roderick et al., 2013). We did see a decrease in the percentage of cells 

expression Notch1IC in both CD4+ and CD8+ T cells of the bone marrow when we treated 

cells with Bay-11 or induced mice with p50-/- cells. However, we did not see a decrease 

in Notch1IC when AA mice were treated with DHMEQ. This could be because of the 

method with which DHMEQ blocks NF-κB. It is not well characterized, but DHMEQ is 

thought to block NF-κB by blocking its nuclear localization signal (Ariga et al., 2002). 

Along with NF-κB, DHMEQ could also be affecting Notch1IC
 translocation, and 

somehow causing an accumulation of Notch1IC in the cytoplasm that is unable to be 

degraded. However, further studies on the mechanism of inhibition of DHMEQ need to 

be performed to understand the mechanism of inhibition. 

The chemokine receptor CXCR4 is responsible for chemotaxis of cells along 

gradients of SDF-1, which is mainly secreted in the bone marrow (Viola et al., 2006). 

Many metastatic cancers, which require motility of cancerous cells to sites such as the 

bone marrow, also have high expression of CXCR4 (Helbig et al., 2003). Since SDF-1 is 

highly expressed in the bone marrow, it was not surprising that T cells from AA mice that 

have migrated to the bone marrow express higher levels of CXCR4 compared to splenic 

resident T cells from irradiated controls. Also, we found that CD8+ T cells that infiltrate 

the bone marrow express higher amounts of CXCR4 compared to CD4+ T cells that 

infiltrate the bone marrow. While we cannot assume that higher expression of CXCR4 

contributes to T cell pathogenicity in this context, it is interesting to speculate that the 

high expression of CXCR4 is one of a multitude of contributing factors that cause CD8+ 
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T cells to play such an important role in our model of AA and human disease (Young et 

al., 2008). It is probably through the aberrant expression of CXCR4 that T cells are able 

to home to the bone marrow in response to SDF-1 and mediate damage to the resident 

stem and progenitor cells. However, since CXCR4 has been shown to be a costimulatory 

molecule during TCR signaling, it could be helping to augment T cell activation in this 

context (Kumar et al., 2006; Molon et al., 2005). 

NF-κB signaling has been shown in breast cancer models to directly regulate the 

expression of CXCR4, and this contributes directly to the metastatic and motile 

tendencies of secondary tumors both in vitro and in animal tumor models (Helbig et al., 

2003). Notably, in AA mice where NF-κB signaling was inhibited, we detected a 

significant reduction of the percentage of BM-infiltrating CD8+ T cells expressing 

CXCR4, and the expression of CXCR4 on these cells was also significantly decreased. 

We were able to mirror this observation using in vitro MLR cultures. Using this method, 

we were able to see a decrease in CXCR4 expression in both CD4+ T cells and CD8+ T 

cells when cultures were treated with Bay-11. We didn’t the same robust decrease in 

CXCR4 expression on CD4+ T cells from the bone marrow of our AA mice, however, 

this could be due to differing kinetics of expression between the two systems or CD4+ T 

cells in the bone marrow of AA mice could downregulate their CXCR4 expression upon 

entrance to the bone marrow. Both of these possibilities would have to be further 

researched. 

Using a chemotaxis assay, we are able to show that inhibiting NF-κB signaling 

not only decreases CXCR4 expression, but it also reduces the chemotactic ability of these 

cells in response to SDF-1α. This fits in with our hypothesis that CXCR4 expression is 
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causing T cells to mobilize to the bone marrow where this is a large expression SDF-1α 

in normal physiological instances. However, levels of SDF-1 have not been explored in 

AA patient bone marrow aspirates, but it would be interesting to see if they expressed 

higher levels of SDF-1. This could partly answer why T cells home to the bone marrow 

to mediate destruction in AA. 

Based on these studies, we provide clear evidence that NF-kB signaling 

contributes to disease pathology in AA by modulating CXCR4-mediated migration of 

CD4+ and CD8+ T cells to the BM. Blocking NF-κB signaling may not only help decrease 

CXCR4 mediated migration, but it may also help quell the pathogenic T cell activation 

that is a hall mark of this disease. The multimodal targeting of NF-κB signaling inhibitors 

makes them an attractive therapy. However, studies must be done to see if there would be 

pan-suppressive effects to the immune system by blocking this important signaling 

pathway.  CXCR4 inhibitors may also be an attractive candidate. However, it may cause 

pathogenic T cells to home away from the bone marrow, causing possible tissue 

destruction in other organs through cytokine storm. Further studies on both types of 

inhibitors could prove invaluable in the search for a cure. 
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Figure 3.1 Pharmacologically inhibiting NF-kB inhibition in a mouse model of AA 
attenuates disease 
 
Mice were induced with AA and treated with DHMEQ, Bay-11, or induced with p50-/- 
splenocytes as described above.  On day 17 post-induction, mice were harvested and (A) 
total bone marrow cellularity was determined using trypan blue exclusion. (B) 
Representative hematoxylin and eosin staining of sterna of AA mice. Magnification=20x.  
Circulating (C) white blood cells (WBC) and (D) red blood cells (RBC) were measured. 
(E) Percentages of CD4+ and CD8+ T cells infiltrating the bone marrow were determined 
using flow cytometry. (F) Kaplan–Meier survival estimates of AA mice induced with 
disease and treated with DMSO (n=4) or Bay11 (n=7) beginning on day 5 post-disease-
induction and continuing until day 17 post-disease-induction (p<0.01) and (G) Kaplan–
Meier survival estimates of AA mice induced with WT (AA; n=4) or p50-/- splenocytes 
(p50-/- AA; n=7) , p=0.0339. Data are the mean plus SEM and analyzed using one way 
ANOVA plus Tukey post test or log rank test for survival estimates *, P < 0.05; **, P < 
0.01; ***, P < 0.001.  
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Figure 3.2 Donor cells in p50-/- induced AA mice do not expand compared to donor 
cells in WT induced AA mice 
 
F1 recipient mice were induced with WT or p50-/- C57BL/6 bulk splenocytes and mice 
were harvested at day 10, 13, 15, and 17 post induction. Donor cells were tracked by flow 
cytometry by gating on H2kb+H2kd- cells in the (A) bone marrow, (B) spleen, and (C) 
peripheral blood of recipient mice. n=3; data are the mean +/- SEM of three independent 
experiments. *p<0.05, **p<0.01, ***p<0.001; Two Way ANOVA and Bonferroni post 
test. 
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Figure 3.3 Inhibiting NF-κB nuclear localization decreases Th1 associated cytokine 
concentrations in the plasma of AA mice 
 
AA mice treated with DMSO (BMF Control) or treated with DHMEQ were induced and 
circulating cytokines were assessed using the Cytometric Bead Array Multiplex Kit (BD 
Biosciences). Cyotkines assessed: (A) IL-2, (B) IL-6, (C) TNF, (D) IFNγ, (E) IL-4, (F) 
IL-17A, and (G) IL-10. n=4 in each group. *p<0.05, **p<0.01, ***p<0.001; unpaired 
student t test. 
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Figure 3.4 Intracellular Notch1 is reduced in the bone marrow bone marrow 
infiltrating T cells when NF-κB signaling is targeted 
 
Notch1IC were analyzed using flow cytometric methods in CD4+ or CD8+ T cells from 
the bone marrow of mice induced with AA. (A) Percentage of Notch1IC and (B) Median 
fluorescent intensity (MFI) were determined. n=3-15 animals. Data represents the mean 
plus SEM analyzed with One Way ANOVA and Tukey’s post test.. *p<0.05, **p<0.01, 
***p<0.001. 
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Figure 3.5 CXCR4 protein expression is upregulated on T cells in mice with Aplastic 
Anemia 
	  
	  Mice were induced with AA and T cells were isolated from the bone marrow and spleen. 
(A) Relative expression of cxcr4 transcript in spleen and bone marrow T cells from 
diseased mice was determined by qPCR and compared to expression in spleen T cells 
from γIR-treated mice; n=8. (B) Median fluorescence intensity (MFI of CXCR4 on 
spleen and bone marrow T cells from diseased animals was determined by  flow 
cytometry; n=8. (C) Representative comparative histogram of CXCR4 MFI of spleen and 
bone marrow T cells in diseased mice. (D) Percentage of CXCR4 expressing T cells as 
assessed by flow cytometry in T cells from AA mice. (E) MFI of CXCR4 expression on 
T cells from the bone marrow of AA mice. Data represent the mean plus SEM and were 
analyzed by one way ANOVA plus Tukey post test (A,B, and D), or by unpaired student 
t test (E). *, P < 0.05; **, P < 0.01; ***, P < 0.001 
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Figure 3.6 Blocking NF-kB decreases CXCR4 expression in T cells and abrogates 
their chemotaxis  
 
Mice were induced with AA and treated with NF-κB inhibitors as described above. The 
(A) percentage of CXCR4 T cells and the (B) MFI of CXCR4 on T cells resident in the 
bone marrow was analyzed by flow cytometry, n=8. Bulk splenocytes from C57BL/6 
mice were treated with DMSO or Bay11 (1 mM) and co-cultured with bone marrow-
derived DCs from F1 hybrids for 12 days. CXCR4 expression was assessed using flow 
cytometry in (C) CD4+ and (D) CD8+ T cells; n=3. T cells isolated on day 8 from co-
cultures (as above) were seeded into a chemotaxis assay with 0 ng/ml or 100 ng/ml of 
SDF-1 was coated onto lower chamber wells. The chemotaxis index ratio was calculated: 
(number of cells present in the 100 ng/ml SDF-1 chamber/number of cells present in the 
0 ng/ml SDF-1 chamber) for DMSO- or Bay11-treated (E) CD4+ and (F) CD8+ T cells; 
n=3. Data are the mean plus SEM and were analyzed using Two Way ANOVA with 
Bonferroni post test (A,B) or two-tailed unpaired student t test (C,D). *, P < 0.05; **, P < 
0.01; ***, P < 0.001.  
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CHAPTER 4 
 

MICRORNA-155 DRIVES THE PROGRESSION OF APLASTIC ANEMIA 

THROUGH REGULATION OF PD-L1 

 

4.1 Introduction 

 

 MicroRNA-155 (miR-155) is a non-coding RNA in an exon that is transcribed from 

the B-cell Integration Cluster (BIC) gene located on chromosome 21 in humans and 

chromosome 16 in the mouse genome (Tam, 2001). This region of BIC is conserved 

across human, mouse and chicken genomes and is highly expressed in lymphoid organs 

across species, implying an evolutionarily conserved function (Lagos-Quintana et al., 

2002). miR-155 signaling has been shown to play important roles throughout the immune 

system, including roles in hematopoiesis, innate immunity, neoplasia and viral infections 

(Bhela et al., 2014; Chen et al., 2014; Dudda et al., 2013; Jiang et al., 2014; O'Connell et 

al., 2008; Romania et al., 2008). Additionally, miR-155 has been implicated in the 

development of inflammation and other adaptive immune responses (Lodish et al., 2008; 

O'Connell et al., 2008). For example, miR-155 has been shown to play an important role 

in T and B cell responses, and miR- 155 levels increase upon their activation (Thai et al., 

2007). In B cells, miR-155 is important for the formation of germinal centers, class 

switching of antibodies, and somatic hypermutation (Dorsett et al., 2008; Rodriguez et 

al., 2007; Thai et al., 2007; Vigorito et al., 2007). 

In T cells, miR-155 has been shown to play an important role in influencing the 

differentiation of naïve T cells into different helper subtypes. T cells deficient in 
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BIC/miR-155 skew towards a Th2 phenotype through their inability to produce IFNγ and 

IL-12 (Rodriguez et al., 2007). miR-155 deficiency has also been shown to reduce the 

number of Tregs in the periphery and thymus of mice, but it does not reduce their 

suppressive capacity (Lu et al., 2009). Also, miR-155-/-
 cells produce less IL-17a, and 

miR-155-/-
 mice do not develop EAE (O'Connell et al., 2010). Additionally, patients with 

rheumatoid arthritis (RA) have higher levels of miR-155 in their synovial fluid than 

patients with osteoarthritis (Spoerl et al., 2013). Also in RA patients, miR-155 has been 

shown to target CTLA-4, a negative regulator of T cell activation (Spoerl et al., 2013). 

These data suggest that miR-155 could be acting to enhance T cell activation, and the 

dysregulation of miR-155 could cause aberrant T cell signaling in autoimmune diseases 

through faulty regulatory mechanisms. 

Because miR-155 plays a role in Th1 differentiation and autoimmune disease, we 

sought to see if miR-155 plays a role in driving Aplastic Anemia.  Using our AA mouse 

model and miR-155-/- mice as the source of our donor splenocytes, we found that miR-

155 was necessary for AA pathogenesis.  Also, we found that miR-155 expression is 

decreases Notch1 activation, and miR-155 targets PD-L1 expression in T cells causing a 

decrease of iTreg cells in our AA mice. 
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4.2 Results 

 

4.2.1 miR-155 expression is increased when mice are induced with Aplastic Anemia 

 

Because AA is driven by Th1 cells and miR-155 has been shown to play a role in 

Th1 differentiation, we hypothesized that miR-155 would be highly expressed in our 

mouse model of AA.  To examine the levels of miR-155, AA was induced in our mouse 

model as described above. Seventeen days after disease induction, we harvested bone 

marrow from recipient mice and quantified the miR-155 expression using qRT-PCR. 

Compared to irradiated controls, AA mice had significantly more miR-155 expressed in 

the bone marrow (Figure 4.1A). In the spleen, T cells from irradiated controls and spleen 

cells from AA mice were also analyzed for miR-155 expression. Like in the bone 

marrow, T cells from mice induced with AA had significantly higher amounts of miR-

155 compared to the irradiation controls (Figure 4.1B). We next took peripheral blood 

samples from AA patients without prior IST treatment and compared the miR-155 

expression to T cells from healthy donors. While there was no significant different in 

miR-155 expression between the two groups, 2 out of 3 patients samples had increased 

miR-155 expression compared to the mean of healthy donor samples (Figure 4.1C). 

These data confirms that miR-155 levels are increased in our mouse model of AA. 
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4.2.2 miR-155 is necessary for the development of Aplastic Anemia 

 

 Because miR-155 plays an important role in autoimmune diseases with a strong 

Th1 component such as EAE and RA, we wanted to see if miR-155 was necessary to 

drive AA (O'Connell et al., 2010; Spoerl et al., 2013). To achieve this goal, we used 

splenocytes from WT or miR-155-/-
 mice (B6.Cg-Mir155 tm1.1Rsky/J; Jackson Laboratories) 

and induced AA as described above. AA mice induced with miR-155-/- splenocytes had 

increased bone marrow cellularity as assessed using trypan blue exclusion (Figure 4.2A) 

and increased white blood cells (Figure 4.2B) and red blood cells (Figure 4.2C)  

compared to WT BMF controls confirming that miR-155 is required for the development 

of AA symptoms in our mouse model.  

Next, we wanted to see if miR-155 was needed for the autopathogenic T cell 

response in our model. When we examined T cell infiltration into the bone marrow using 

flow cytometry. miR-155-/- AA mice had a significantly reduced level of both CD4+ 

(Figure 4.2D) and CD8+ (Figure 4.2E) T cells present in the bone marrow, and the T cell 

levels were comparable to irradiation controls. Finally, we induced AA mice with WT 

splenocytes or miR-155-deficient splenocytes and performed a survival study. We found 

that while WT mice succumb to disease at a mean day of 21 post induction, miR-155 

survived indefinitely, and this difference was significant (Figure 4.2F; p<0.01). These 

data suggest that miR-155 is necessary in driving the pathogenesis of Aplastic Anemia. 
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4.2.3 AA mice induced with miR-155-deficient cells express less Notch1IC in the T 

cell compartment. 

 

 Notch signaling has been shown to drive the pathogenesis of Aplastic Anemia 

(Roderick et al., 2013). Therefore, we wanted to see if deleting miR-155 in our donor 

cells decreased Notch1IC in the infiltrating T cells in our mouse model. To answer this 

question, we induced our AA mice with WT or miR-155-/- cells and on day 17 post 

disease induction, we examined the Notch1IC expression using flow cytometry. In the 

bone marrow of mice induced with miR-155-/- splenocytes, the Notch1IC expression is 

significantly decreased in the CD8+ T cells and are present in these cells at levels similar 

to irradiation controls (Figure 4.3B). While not significant, Notch1IC is reduced in CD4+ 

T cells infiltrating the bone marrow (Figure 4.3A). In the spleen of AA induced mice, 

Notch1IC expression in both CD4+ and CD8+ T cells is significantly reduced compared to 

the WT BMF induced mice, and the level of Notch1IC in these cells is also similar to 

irradiation controls (Figure 4.3, C and D). These data suggest that miR-155 is needed for 

activation of Notch1 in our mouse model of AA, and this could be one mechanism of 

how miR-155 is driving the pathogenesis of T cells in the disease. 

 

4.2.4 Notch1IC expression is reduced in mir-155-deficient CD4+ T cells compared to 

WT CD4+ T cells 

 

 To further understand the temporal regulation that miR-155 may have on Notch1 

activation, we use MLR cultures as a way to simulate activation of CD4+ T cells in our 
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mouse model of AA. We used BMDC from an F1 hybrid donor and cultured them with 

CD4+ T cells that were isolated from WT or miR-155-/- spleens. We cultured these cells 

for 8 days and examined Notch1IC expression using flow cytometry. Both WT and miR-

155-deficient cultures have the same percentage of Notch1IC positive CD4+ T cells 

(Figure 4.4A) over the entire 8 day cultures. However, in WT CD4+ T cells, Notch1IC 

expression on a per cell basis (MFI) peaks on day 4 and drops back to initial levels on 

day 6 and 8.  In miR-155-/- CD4+ T cells, however, Notch1IC levels never peak on day 4, 

and the day 4 Notch1IC expression is significantly decreased compared to WT CD4+ T 

cells (Figure 4.4B).  

 To see if miR-155 is upstream of Notch activation, or if Notch activation may 

also be important in driving miR-155 expression, we set up MLR cultures with F1 

derived BMDC and WT CD4+ T cells as described above and treated the CD4+ T cells 

with DMSO or GSI 30 minutes prior to plating. We observed that GSI significantly 

decreased miR-155 expression over the 8 day culture as compared to cultures where 

CD4+ T cells were treated with DMSO (Figure 4.4C). The kinetics of activation, however 

seemed to be similar between the two cultures. While both cultures have a peak of miR-

155 expression on day 4, GSI treated CD4+ T cells do not reach the same levels of miR-

155 as DMSO treated cells. These data suggest that after T cell activation, both miR-155 

and Notch activation regulate each other’s expression. 
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4.2.5 PD-L1 expression is significantly higher in miR-155 deficient CD4+ T cells than 

WT CD4+ T cells  

 

Next, we wanted to identify some potential targets of miR-155 that could be 

important in AA pathogenesis. When miR-155 was put into the microRNA target 

predictor, TargetScan, one potential target was PD-L1. Two sites in the human 3’ UTR of 

PD-L1 (gene name CD274) had 7 sites of perfect complementarity to the miR-155 seed 

sequence (Figure 4.5.A). PD-L1 can block T cell proliferation on corresponding T cells 

by engaging its receptor, programmed death ligand 1, or it can also inhibit T cell 

stimulation intrinsically by binding the CD80 molecule (B7-1) on APCs and blocking the 

engagement of CD28 with CD80 (Butte et al., 2007). Therefore, we decided to look at the 

expression of PD-L1 in CD4+ T cell MLR cultures using WT CD4+ T cells or miR-155-

deficient T cells. In the first 2 days of the MLR culture there was no difference in PD-L1 

expression between WT or miR-155-deficient CD4+ T cells. However, when cultures 

were analyzed on day 8 of culture,  PD-L1 was significantly increased in the miR-155-

deficient CD4+ T cells, both in percentage of cells expressing PD-L1 and expression on a 

per cell basis (Figure 4.5, B and C). We also looked at the expression of one receptor for 

PD-L1 signaling, PD-1. We found that PD-1 expression is significantly decreased in 

miR-155-deficient CD4+ T cells, however the percentage of cells expressing PD-1 is not 

decreased. (Figure 4.5, C and D). This would suggest that miR-155 regulates expression 

of PD-L1 in CD4+ cells, and this regulation may also change the expression of PD-1 on 

CD4+ T cells. 
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4.2.6 AA mice  induced with miR-155-/- splenocytes have a higher absolute number 

of iTregs in the spleen and bone marrow compared to WT AA mice 

 

PD-L1 engagement of its receptors on naïve T cells promotes iTreg development 

by inhibiting mTOR/Akt signaling (Francisco et al., 2009). Additionally, PD-L1:PD-1 

signaling can be used in a humanized GVHD model to convert human Th1 cells into 

iTregs in vivo (Amarnath et al., 2011). Therefore, we wanted to see if AA mice induced 

with miR-155-deficient cells had an increased number of iTreg cells. To do this, we 

induced mice with AA as described above and used flow cytometry to assess the iTreg 

population (CD4+CD25+FoxP3+) in the bone marrow and spleen. When we looked at the 

percentages of iTregs, there was no difference between WT and miR-155-/- induced AA 

mice in the bone marrow (Figure 4.6A) or the spleen (Figure 4.6C). However, there was a 

significant increase of iTreg cells in miR-155-/- AA mice when we examined the absolute 

number of iTreg cells. AA mice induced with miR-155 deficient cells had significantly 

higher absolute numbers of iTreg cells compared to WT AA mice in both the bone 

marrow (Figure 4.6B) and the spleen (Figure 4.6D). These results show that miR-155 

deficient AA mice have higher numbers of iTreg cells which could be due to the 

increased PD-L1 expression on the CD4+ T cells.   

 

4.3 Discussion 

 

 Here we show that miR-155 levels are elevated in mice induced with Aplastic 

Anemia, and miR-155 is necessary for the development of immunopathogenic T cells 
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that drive disease symptoms. miR-155 can decrease the levels of activated Notch1IC both 

in vitro after T cell stimulation and in our mouse model of disease, and inhibiting the 

activation of Notch using GSI decreases miR-155 levels in CD4+ T cells. We have 

identified PD-L1 as a potential target for miR-155 in CD4+ T cells; when miR-155 is 

genetically deleted in these cells, PD-L1 expression is increased. In our mouse model, 

miR-155-deficient AA mice have an increased number of iTreg cells in both the spleen 

and bone marrow, perhaps a result of an increase of PD-L1 expression. 

miR-155 expression has been shown to upregulated in human diseases that have a 

strong Th1 component, such as multiple sclerosis, rheumatoid arthritis, and atopic 

dermatitis when samples are compared to healthy donors (Junker et al., 2009; Sonkoly et 

al., 2010; Stanczyk et al., 2008). Therefore, it was not surprising that we had elevated 

levels of miR-155 expressed in the bone marrow and spleen of our AA mice. However, 

we expected to see a larger difference in levels of miR-155 between our AA patients and 

healthy controls. The fact that we didn’t see an increase in patient samples is probably 

due to our limited sample size, and our lack of knowledge about the patient’s disease 

status. It has been shown previously that expression of markers of Th1 cells, such as T-

BET often correlate with disease severity and an inability to know the disease severity of 

our patient samples could skew our results (Solomou et al., 2006). Also, miR-155 have 

been found in exosomes of human saliva and serum (Bala et al., 2012). We may find a 

higher expression of miR-155 in different types of patient samples, beyond the peripheral 

blood samples we have been analyzing. Moving forward, having a larger patient cohort 

with different types of samples may be able to show if there is a true difference in miR-

155 expression in AA patients. 
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Mice deficient in miR-155 do not develop EAE or collagen-induced arthritis, two 

autoimmune disease with strong Th1 elements (Bluml et al., 2011; Hu et al., 2013; 

O'Connell et al., 2010; Yao et al., 2012). We were pleased to see that miR-155 was also 

necessary for AA pathogenesis in our model. Not only were symptoms ameliorated and T 

cells that infiltration into the bone marrow ablated, mice induced with miR-155-deficient 

splenocytes were able to survive indefinitely. This evidence points to a T cell intrinsic 

role that miR-155 is playing in AA. miR-155 has been shown to mediate the 

inflammatory affects of CD4+ cells in a mouse model of EAE, and miR-155 deficient 

CD8+ cells were ineffective at controlling tumor growth (Dudda et al., 2013; O'Connell et 

al., 2010). Further investigation into the role of miR-155 in both CD4+ T cells and CD8+ 

T cells in our model would be interesting. 

 We observed that miR-155 deficiency results in a decrease of Notch1 activation in 

T cells, both in vitro and in vivo. Also, in MLR cultures, using GSI to inhibit Notch 

activation reduces the miR-155 expression in CD4+ T cells. Although neither of these 

experiments address direct regulation, it does seem that both of these pathways work in 

tandem after T cell activation. Currently, there has been no studies that investigate the 

regulation of miR-155 by Notch, or visa versa. However, both Notch1 activation and 

miR-155 expression have been shown to be regulated by the NF-κB pathway. While there 

have been studies providing a link between the Notch1 and NF-κB signaling pathway in 

T cells (Shin et al., 2006; Shin et al., 2014), the studies linking miR-155 expression and 

NF-κB signaling has been done only in B cells and cancer cell lines (Ma et al., 2011). 

Therefore, it would be interesting to further understand if Notch and miR-155 work 
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together to regulate signaling downstream of the TCR and if they interact with NF-κB 

signaling to do so. 

 We next aimed to find a direct mRNA target of miR-155 repression that could be 

playing a role in Aplastic Anemia. Upon searching the microRNA target database, Target 

Scan, we were able to identify CD274 or PD-L1 as a potential target. Since PD-L1 

signaling acts to suppress aberrant T cell activation through interaction with PD-1 or 

CD80 (Butte et al., 2007), we reasoned that high miR-155 expression in AA would lead 

to a decrease in PD-L1 expression, thus favoring pathogenic T cell activation. We were 

able to show that miR-155-deficient CD4+ T cells have increased levels of PD-L1 

compared to WT CD4+ T cells. More analysis has to be done into if PD-L1 is a direct 

target of miR-155, i.e. does miR-155 directly bind to PD-L1 mRNA on its 3’ UTR 

regions to block translation. However, a study pulling down complexes of miR-155 and 

Argonaute in CD4+ T cells was able to identify PD-L1 mRNA present in these complexes 

(Loeb et al., 2012).  

 Since PD-L1 engagement of its receptors on naïve T cells promotes iTreg 

development, and PD-L1:PD-1 signaling can be used in a human-into-mouse GVHD 

model to convert human Th1 cells into iTregs in vivo (Amarnath et al., 2011; Francisco et 

al., 2009), we hypothesized that miR-155-deficient AA mice could have higher iTreg 

populations in their bone marrow and spleen compared to WT AA mice. While we did 

not see a difference in the percentage of iTreg cells, there was a significant difference in 

the absolute numbers of iTregs in the bone marrow and spleen of miR-155-deficient AA 

mice. To show that higher PD-L1 expression is necessary for iTreg development that in 

turn could be ameliorating disease in AA mice, blocking PD-L1 expression in miR-155-
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deficient AA mice and assessing both iTreg populations and disease symtoms should be 

performed. Also, further exploration into the kinetics of PD-L1 expression in AA mice 

would be helpful in understanding if PD-L1 signaling is turning already differentiated 

Th1 cells into iTreg cells in our model, or if miR-155 deficiency is influencing naïve T 

cells to differentiate to iTreg cells instead of Th1 cells. All together, this cumulative 

evidence shows that miR-155 is important in AA pathogenesis and is functioning, at least 

in part, through a repression of PD-L1 expression. 
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Figure 4.1 miR-155 expression in mice with Aplastic Anemia is higher compared to 
irradiated controls 
 
Mice sub-lethally irradiated only (IR control) or mice induced with AA (BMF) were 
harvested on day 17 post disease induction. (A) Whole bone marrow from IR controls 
and BMF mice or (B) CD4+ and CD8+ positively selected cells from IR controls and 
whole splenocytes from BMF mice were analyzed for miR-155 expression with sno202 
used as a reference gene. n=7; Mean + SEM of three independent experiments. (C) CD4+ 
and CD8+ cells were positively selected from human PBMC (Control) and whole AA 
peripheral blood samples (AA Patient Samples) were analyzed for miR-155 using qRT-
PCR with RPS9 used as a reference gene. n=3; line represents mean of two independent 
experiments. *p<0.05, **p<0.01, ***p<0.001; unpaired student t test. 
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Figure 4.2 Inducing BMF mice with miR-155-deficient splenocytes ameliorates 
disease symptoms 
 
Mice were induced with AA using WT or miR-155-deficient splenocytes. On day 17 
post-induction, mice were harvested and (A) total bone marrow cellularity was 
determined using trypan blue exclusion. Circulating (B) white blood cells (WBC) and (C) 
red blood cells (RBC) were measured. Percentages of (D) CD4+ and (E) CD8+ T cells 
infiltrating the bone marrow were determined using flow cytometry. (E) Kaplan–Meier 
survival estimates of AA mice induced with disease and treated with WT (n=4) or miR-
155-deficient splenocytes (n=7; p<0.01) Data are the mean plus SEM and analyzed using 
one way ANOVA plus Tukey post test or log rank test for survival estimates *, P < 0.05; 
**, P < 0.01; ***, P < 0.001 
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Figure 4.3 miR-155-/- AA mice express less Notch1IC in the T cells in the bone 
marrow and spleen 
 
Notch1IC was analyzed using flow cytometry in mice induced with AA using WT (BMF) 
or miR-155-deficient splenocytes (miR-155 KO), or irradiated only (IR control). Data 
represents the Median Fluorescent Intensity (MFI) of Notch1IC in the (A) CD4+ gate (B) 
and CD8+ gate of the bone marrow of induced mice and the MFI of Notch1IC in the (C) 
CD4+ gate (D) and CD8+ gate of the spleen . n=3-7; Data represents the mean + SEM of 
three independent experiments; * p <0.05, ** p<0.01, *** p<0.001; One-Way ANOVA 
test with Bonferroni post test. 
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Figure 4.4 The expression of intracellular Notch1 in miR-155-deficient CD4+ T cells 
is reduced compared to WT CD4+ cells  
 
A mixed lymphocyte reaction (MLR) culture was set up with F1 derivied BMDC cells 
mixed with positively selected CD4+ C57BL/6 WT or miR-155-/- cultured for 8 days 
Notch1IC expression was analyzed using flow cytometry. (A) Percentage of CD4+ cells 
expressing Notch1IC and B) MFI of Notch1IC expression in the CD4 gate are shown. D. 
A) WT CD4+ cells were pretreated with DMSO or 50 uM of GSI for 30 minutes and 
mixed with F1 derived BMDC in a MLR culture. qRT-PCR was done to determine miR-
155 expression using sno202 as a reference gene. All expression values were calculated 
relative to naïve CD4+ WT T cells. Data are the mean +/- SEM of three independent 
experiments. *p<0.05, **p<0.01, ***p<0.001; Two Way ANOVA and Bonferroni post 
test. 
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Figure 4.5 PD-L1 expression is increased in miR-155-deficient CD4+cells compared 
to WT CD4+cells 
 
(A) A schematic of two predicted miR-155 target sequences on the 3’ UTR PD-L1 
mRNA. Red boxes and red text indicate the complementary sequences. The top miR-155 
seed sequence is conserved amongst human and mouse (among others), while the bottom 
is poorly conserved. These sequences were predicted using the online software, 
TargetScan (targetscan.org). (B-E) MLR cultures using WT and miR-155-/- CD4+ cells 
were analyzed by flow cytometry. (A) Percent of PD-L1 expression on CD4+ cells, (B) 
PD-L1 MFI of CD4+ cells, (C) percentage of CD4+ cells that express PD-1, and D) the 
MFI of PD-1 expression on CD4+ cells. Data are the mean +/- SEM of three independent 
experiments. *p<0.05, **p<0.01, ***p<0.001; Two Way ANOVA and Bonferroni post 
test. 
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Figure 4.6 miR-155-deficient AA mice have a more iTreg cells in the bone marrow 
and spleen than WT AA mice 
 
Percentage of iTreg expression was analyzed in mice were induced with AA with WT 
(BMF) or miR-155-/- (miR-155 KO) splenocytes. iTreg cells were analyzed by FACS 
analysis on day 17 post induction and gated as CD4+CD25+FoxP3+ cells. Percentage of 
iTreg cells were determined in (A) bone marrow and (C) spleens of induced mice. 
Absolute numbers of iTregs were enumerated by multiplying the percentage of iTreg 
cells by total cell number of (B) bone marrow and (D) spleen cells. n=3-4. Data are the 
mean + SEM of three independent experiments. *p<0.05, **p<0.01, ***p<0.001; 
unpaired student t test. 
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CHAPTER 5 

 

CONCLUDING REMARKS 

 

 Aplastic Anemia is a rare bone marrow failure disease that is characterized by bone 

marrow hypoplasia and severe pancytopenia. Fortunately, there is a low incidence of 

disease in the United States (less than 6 cases per million population) and the estimated 

five year survival rate of those who respond to IST and BMT therapies are 75% and 90%, 

respectively (Scheinberg, 2012). However, there is a large cohort of patients who do not 

respond to current treatments and eventually succumb to disease.  

 Understanding the cellular mechanisms that drive AA has long been a focus of 

research in the hopes of developing new therapies. Unfortunately, samples from patients 

with the disease are rare. Earlier work focused on discovering the epitopes of serum 

antibodies and the activating antigen from patient CD8+ T cell clones, but researchers 

were never able to pinpoint inciting antigens that caused the vast immune destruction to 

the bone marrow in a large cohort of patients (Feng et al., 2004; Goto et al., 2013). It is 

possible that inciting antigen in each patient is as diverse as the etiologies of the disease. 

However, this could cause difficulty for basic researchers trying to study the disease. 

 Because an inciting antigen has never been found, the field has had to rely on MHC 

haplotype mismatch graft-versus-host disease models for research purposes, and our lab 

has been able to develop a mouse model that closely resembles human disease (Roderick 

et al., 2013). Using this model, we investigated the involvement of three important 

signaling pathways that have been previously implicated in T cell activation and 
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differentiation in Aplastic Anemia. First, we are able to show that active PKCθ (pPKCθ) 

is highly expressed in our mouse model, and we were able to observe the same high 

expression when we looked a pPKCθ levels in patient peripheral blood samples. Previous 

studies from our lab have also shown that using PKCθ-deficient donor cells in our mouse 

model or treating AA mice with rottlerin, a PKCθ activity inhibitor, ameliorates disease 

symptoms (Roderick, unpublished). We were additionally were able to show that PKCθ 

acts upstream of Notch1 to drive T cell stimulation and IFNγ production. Since Notch1 

signaling is important in AA pathogenesis (Roderick et al., 2013), we can conclude from 

this evidence that PKCθ plays an important role in driving Aplastic Anemia and works 

upstream of Notch1 to drive disease. 

 We then investigated the role that NF-κB plays in AA pathogenesis. This works 

shows that NF-κB drives AA through multiple mechanisms. In our model, the p50 

subunit of NF-κB was needed for the expansion of donor T cells in our model. While 

other NF-κB subunits are also important for mediating donor T cell expansion, we did not 

have the genetic tools to ask that questions; however, it would be interesting to discern 

which subunits were important in T cell expansion during disease. We were also able to 

show that NF-κB signaling regulates CXCR4 expression on T cells in our mouse model 

and that CXCR4 drives T cells into the bone marrow to mediate destruction. Although 

NF-κB has been shown to regulate CXCR4 expression in cancer models (Helbig et al., 

2003), our work is the first to describe direct CXCR4 regulation by NF-κB in T cells and 

in Aplastic Anemia.  

  We finally examined the role of the microRNA, miR-155 in AA. miR-155 is a 

microRNA that has been widely implicated in the development and maturation of the 
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immune system, and plays a large role in both T cell activation and differentiation. miR-

155 has been shown to be highly expressed in patient samples from many autoimmune 

diseases, and is necessary for the development of these diseases in mouse model studies. 

We found that miR-155 is highly expressed in the bone marrow and spleen in our mouse 

model, and AA mice induced with miR-155-deficient cells do not develop disease. miR-

155 regulates Notch1 activation in our AA mice, and although there has been little 

research linking these two pathways, both miR-155 and Notch1 have been shown to be 

regulated by NF-κB signaling. However, in vitro studies seem to suggest that not only 

does miR-155 regulate Notch1 activation, but Notch signaling also regulates miR-155 

expression. This could point to the NF-κB as a linker of the two pathways, since Notch 

signaling is differentially regulated by NF-κB at different points post TCR activation 

(Shin et al., 2006).  

 We were also able to identify a potential direct target of miR-155 in CD4+ T cells. 

PD-L1 was predicted by the database TargetScan.org as a potential direct target of miR-

155 translational repression, and we were able to show that in CD4+ cells, PD-L1 is 

increased when miR-155 is deleted. Further work will have to be done using luciferase 

assays to see if the 3’ UTR region of PD-L1 is indeed a direct translational target of miR-

155. Based on a former study where PD-L1 mRNA could be pulled down with 

Argonaute-miR155 complexes in CD4+ T cells, it is a strong possibility that PD-L1 is a 

direct target of miR-155 (Loeb et al., 2012). Also, It would also be interesting to if  

disease in miR-155-/- AA mice could be rescued by treating mice with a blocking 

antibody to PD-L1. This would further confirm that PD-L1 is a target in vivo. Also, it 

would be interesting to see if miR-155 regulation of PD-L1 is limited to CD4+ T cells or 
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if this regulation is found in other cell types. 

 The three pathways that are investigated in this work are important to T cell 

stimulation, differentiation, and AA pathogenesis. However, it begs the question: would 

targeting any of these pathways be a possible therapeutic route for AA?  NF-κB and miR-

155 are pathways that are found to have important roles in many cell types, not just those 

of the hematopoietic origin. Therefore, it is possible that targeting these pathways would 

not be an improvement on the current IST used for treatment because they would lack 

specificity to T cells. In fact, they may be more widely suppressive than current 

treatment. More studies into toxicity and off-target affects must be done before any 

advancements can be made in these instances.  

 Targeting the PKCθ pathway, however, could hold more promise. PKCθ expression 

is fairly limited to a small amount of cell types, and T cells are the only immune cell in 

which PKCθ is expressed. Therefore, inhibiting this pathway could preserve innate 

immunity and B cell responses, and in the event that AA patients on PKCθ inhibitors 

were also infected with a viral or bacterial pathogen, their other immune responses would 

still be able to fight disease. Additionally, PKCθ seems to be selectively needed only in 

certain T cell immune responses, further protecting the patient against infectious 

pathogens. For example, reports suggest that PKCθ is required for Th2 and Th17 

responses, but it has been shown to be dispensable for generating both Th1-mediated 

antiviral and memory T cell responses (Kwon et al., 2012; Marsland et al., 2005; 

Marsland et al., 2004). Conversely, PKCθ has been shown to play a role in autoimmune 

diseases with a strong Th1 component, such as experimental autoimmune 

encephalomyelitis, rheumatoid arthritis, and myosin-induced autoimmune myocarditis 
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(Healy et al., 2006; Marsland et al., 2007; Salek-Ardakani et al., 2005; Tan et al., 2006).  

Also, in a mouse model of graft-versus-host disease (GVHD), PKCθ was required to 

induce GVHD pathology, but not to clear viral pathogens or mediate graft-versus-

leukemia processes (Valenzuela et al., 2009). This evidence is extremely important when 

thinking about treatment for AA. PKCθ is clearly necessary in Th1 associated 

autoimmune diseases such as AA, however, Th1 responses to intracellular pathogens 

seems dispensable, making PKCθ inhibitors very attractive for AA. Maybe most 

importantly, PKCθ inhibiting treatments could be used before BMT or in conjunction 

with BMT. PKCθ inhibition has been shown to not only block GVHD, but preserve 

GVL. This would be an improvement on current therapies, which sometimes cause 

rejection of the BMT. For these reasons, PKCθ inhibiting therapies are perhaps the most 

compelling in the search for a treatment for refractory and relapsing Aplastic Anemia.  

 In conclusion, this work investigates multiple pathways that drives the progression 

of Aplastic Anemia both in our mouse model and in patient samples. While there is still 

much work to be done to elucidate the full story of how these pathways interact to drive 

disease, this work presents a strong foundation that can be used in the search for future 

therapies. 
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CHAPTER 6 

 

MATERIALS AND METHODS 

 

6.1 Animals 

 

All mouse protocols were approved by the Institutional Animal Care and Use 

Committee of the University of Massachusetts Amherst. F1 progeny were obtained by 

crossing BALB/c females with C57BL/6 males, both obtained from the Jackson 

Laboratory (Bar Harbor, Maine). PKCθ-/-, p50-/- and miR155-/- mice were created on a 

C57BL/6 background and were maintained as homozygous breeding pairs. PKCθ-/- 

parental strains were originally received as a gift from Dan Littman, and p50-/- and 

miR155-/-  parental strains were obtained from the Jackson Laboratories. Mice between 

the ages of 7–12 weeks were used in experiments. 

 

6.2 Bone Marrow Failure Induction and Analyses 

 

F1 progeny were conditioned with 3 Gy of total body irradiation using a 137Cs 

source. 4 to 6 h later, 5 × 107 bulk splenocytes from age- and gender-matched C57BL/6 

(WT or knockout) donors were given via i.p. injection. Mice were monitored daily for 

signs of disease and harvested on day 17 or 31-post disease induction. For survival 

studies, mice were considered lethally induced on the day they were no longer able to 

take food or water, at which time they were humanely euthanized. After CO2 
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asphyxiation, peripheral blood was obtained via cardiac puncture and sterna were 

collected for histology. BM cells were recovered from the tibias and femurs of both legs 

by flushing the bones with 5% FBS/PBS. Splenocytes were isolated by manipulation 

through a 40-µM filter. Red blood cells were lysed in ACK lysis buffer, and the 

remaining white blood cells were enumerated using Trypan Blue exclusion. White and 

red cell counts were performed on peripheral blood using a HemaTrue Hematology 

Analyzer (Heska). 

 

6.3 In vivo administration of NF-κB inhibitors 

 

For NF-κB inhibition studies, one hour after disease induction mice were treated 

with 30 mg/kg/day of DHMEQ or 5 mg/kg/every other day of Bay 11-7085 (Calbiochem, 

hereafter abbreviated as Bay 11) administered via i.p. injection and the treatment was 

continued until day 16 post-disease induction. Control mice received an equivalent 

volume of DMSO vehicle. For NF-κB survival studies, mice were treated with 5 

mg/kg/every other day of Bay 11 administered via i.p injection from days 7 to 17 post-

disease induction, at which time treatment was discontinued. For survival studies, mice 

were considered lethally induced on the day they were no longer able to take food or 

water, at which time they were humanely euthanized. 
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6.4 Histology 

 

Sterna were harvested on day 17 after BMF induction, fixed in 10% neutral 

buffered formalin (VWR) overnight, and decalcified in Cal-Rite (Richard Allen 

Scientific) for 48 hours. Samples were preserved in 70% ethanol at 4°C until they were 

processed, paraffin-embedded, sectioned, and stained with hematoxylin and eosin. 

 

6.5 T cell isolation and in vitro assays 

 

Spleens were isolated and manipulated through a 40-µM filter (BD Biosciences), 

and splenocytes were treated with ACK lysis buffer. CD4+ and CD8+ T cells were then 

isolated using the anti-mouse CD4 and CD8 magnetic particles (IMag; BD) and separated 

using the BD IMag system. Cells were plated at 2.25–3 × 106 cells/well in 12-well plates 

precoated with anti-CD3ε and anti-CD28, purified from 145-2c11 and 37N hybridoma 

cell lines, respectively and cross-linked with anti-Hamster IgG (Sigma). Cells were 

cultured in a 1:1 ratio of RPMI-1640 and DMEM medium supplemented with 10% FBS 

(Gibco), 2 mM l-glutamine, 1 mM Na pyruvate, 100 U/ml penicillin, and 100 µg/ml 

streptomycin, at 37°C in a humidified atmosphere with 5% CO2 for the indicated amount 

of time. Media and supplements were purchased from Lonza unless otherwise specified. 

In some cases, WT T cells cell were treated with DMSO or 3 µM of Rottlerin (Sigma) at 

the time of plating or 24 hours after plating, as specified. 
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6.6 Patient samples and healthy controls 

 

PBMCs from six patients with severe AA who had not received IST were 

obtained from the National Marrow Donor Program Research Sample Repository. 

PBMCs from six healthy donors (STEMCELL Technologies) were included as controls. 

PBMCs were plated at 106 cells/ml in RPMI 1640 medium supplemented with 10% FBS 

(Gibco), 2 mM l-glutamine, 1 mM Na pyruvate, 0.1 mM nonessential amino acids, 100 

U/ml penicillin, and 100 µg/ml streptomycin at 37°C in a humidified atmosphere with 5% 

CO2. Media and supplements were purchased from Lonza unless otherwise specified. 

Control T cells and AA patient PBMCs were preincubated with DMSO or Rottlerin (3 

µM in DMSO) for 30 min at 37°C before being stimulated with 5 µg/ml of plate-bound 

anti-CD3ε (UCHT1) and 2.5 µg/ml anti-CD28 (clone 37407) for 48 to 72 h. All 

antibodies were purchased from R&D Systems. IFNγ cytokine from supernatants were 

determined using a standard ELISA assay (BD Pharmingen). 

 

6.7 Surface and intracellular flow cytometry of murine and human samples 

 

 Murine samples were surface stained with PerCP-conjugated anti-CD4 (RM4-5; 

BD), Pe-Cy7-conjugated anti-CD8a (53-6.7; eBioscience), and APC-conjugated anti-

CXCR4 (2B11; eBioscience). For intracellular staining, cells were fixed and 

permeabilized using the Foxp3 staining buffer set (eBioscience) and stained with PE-

conjugated anti-NOTCH1 (mN1A; eBioscience) and PE-conjugated anti-IFNγ (DB-1; 

BD) according to the manufacturer’s protocol. For IFNγ staining, cells were harvested 
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and cultured in fresh media on anti-CD3ε–coated plates for 5 h in the presence of 

Brefeldin A (GolgiPlug; BD). 

Human samples were surface-stained with APC–conjugated anti-CD4 (RPA-T4) 

and PeCy7–conjugated anti-CD8 (RPA-T8) antibodies. For intracellular staining, cells 

were fixed and permeabilized using the Foxp3 staining buffer set (eBioscience) and 

stained with PE-conjugated anti-NOTCH1 (mN1A). All human antibodies were 

purchased from eBioscience. Samples were acquired on an LSRII flow cytometer and 

analyzed using the acquisition software FACSDiva (BD). Analysis of FACS data was 

performed using FACSDiva or FlowJo (Tree Star) software. 

 

6.8 Validation of phosphorylated PKCθ  detection using flow cytometry 

 

To validate flow cytometric analysis of phospholyated PKCθ, whole cell lysate 

were made using RIPA buffer (150mM NaCl, 1% IgeCal-CA 360, 0.1% 619 SDS, 

50mM Tris, pH-8.0, 0.5% Sodium deoxycholate) and 40 µg of total protein lysates from 

DMSO- or Rottlerin–treated, stimulated murine WT CD4+ and CD8+ T cells was resolved 

on an 8% SDS-PAGE, transferred to nitrocellulose, and probed with an anti-p-PKCθ 

(Cell Signaling) and anti-actin mAb (AC-40; Sigma-Aldrich) to verify equal loading. The 

primary antibodies were detected with HRP-conjugated antibody (GE Healthcare) and 

developed using ECL reagents (Amersham). An aliquot of CD4+ and CD8+ T cells from 

the same experimental replicate was stained for the surface expression of CD4 or CD8 

(described above) and perm/fixed using the BD Cytofix/Cytoperm kit according to 

manufactuter’s instructions. Cells were then incubated with anti-pPKCθ (Cell Signaling) 
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for 30 minutes, washed, and incubated with Alexa Fluor 488-conjugated anti-rabbit IgG 

(Cell Signaling) for 30 minutes.  Samples were acquired using an LSRII flow cytometer 

as described above. 

 

6.9 Cytometric bead array 

 

Cytokine levels were determined in plasma using either the Th1/Th2 or 

Th1/Th2/Th17 cytometric bead array kit (BD) according to the manufacturer’s protocol. 

Sample data were acquired on an LSRII flow cytometer and analyzed using FCAP array 

software (BD). 

 

6.10 Mixed lymphocyte reaction 

 

To generate BM-derived dendritic cells (BMDC), BM cells from F1 progeny were 

cultured at 106 cells/ml in RPMI 1640 medium supplemented with 10% FBS (Gibco), 2 

mM L-glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin and 20 ng/ml GM-CFS 

(R&D systems), and incubated at 37°C with 5% CO2. On days 2 and 4 post-culture, half 

of the media was removed and replaced with fresh supplemented media. On day 6 post-

culture, non-adherent cells were harvested and cultured in fresh supplemented media for 

2 additional days. For the MLR culture, BMDC were co-cultured with bulk splenocytes 

from age- and gender-matched WT or KO C57BL/6 mice at a 1:10 ratio in a 1:1 mixture 

of RPMI 1640 and DMEM medium supplemented with 10% FBS, 2 mM L-glutamine, 1 

mM sodium pyruvate, 100 U/ml penicillin and 100 µg/ml streptomycin in 96-well round-
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bottom plates and incubated at 37°C with 7% CO2 for 12 days. To inhibit NF-κB, 1 µM 

of Bay 11 or an equivalent volume of DMSO vehicle was added at the time of plating. 

From days 6 to 12 post-culture, non adherent cells were harvested every other day and 

analyzed for protein expression by flow cytometry or microRNA expression using qPCR. 

 

6.11 Chemotaxis Assay 

 

On day 8 post-culture, non-adherent cells were harvested from the MLR culture to 

evaluate their chemotactic response to SDF-1α. Chemotaxis assays were performed in 

24-well plate transwell inserts (5 µm polycarbonate membrane, 6.5 mm insert, Corning 

Costar) where 600 µl of RPMI 10% FBS with or without 100 ng/ml of SDF-1α (R&D 

systems) were added to the plate wells and 0.5 X 106 cells in 0.1 µl of RPMI 10% FBS 

were added to the inserts, and incubated at 37°C with 5% CO2. After 3 hours of 

incubation, the transwell inserts were carefully removed and the migrated cells were 

harvested from the wells. The number of CD4+ and CD8+ T cells was determined by flow 

cytometry. The results are expressed as chemotactic index which is the number of 

migrated cells from 100 ng/ml SDF-1α wells divided by the number of migrated cells 

from 0 ng/ml SDF-1α wells. Media and supplements were obtained from Lonza unless 

otherwise specified. 
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6.12 mRNA isolation and quantitative real-time PCR 

 

Total RNA was extracted using the RNAqueous kit (Ambion) according to the 

manufacturer’s protocol. The RNA (1 µg) was reverse transcribed to cDNA using dNTPs 

(Roche), M-MuLV reverse transcriptase reaction buffer (New England Biolabs, Inc.), 

oligo-(dT)12–18 (Invitrogen), RNase inhibitor (Promega), and M-MuLV reverse 

transcriptase (New England Biolabs, Inc.) on a Mastercycler gradient Thermal Cycler 

(Eppendorf). Quantitative real-time PCR was performed in duplicate with SYBR Premix 

Ex Taq (Takara Bio Inc.) using the Stratagene Mx3000P qPCR system (Agilent 

Technologies).  The primer sequences used were: Cxcr4: forward, 5’- GAC TGG CAT 

AGT CGG CAA TG -3’; and reverse, 5’-	  AGA AGG GGA GTG TGA TGA CAA A -3’; 

and Actb: forward, 5’- GGC TGT ATT CCC CTC CAT CG -3’, and reverse, 5’- CCA 

GTT GGT AAC AAT GCC ATG T -3’. Quantitative real-time PCR conditions were as 

follows: 95°C for 1 min, 95°C for 25 s, 62°C for 25 s (35 cycles), 95°C for 1 min, 62°C 

for 1 min, and 95°C for 30 s. The relative expression of Cxcr4 was determined using the 

2−ΔΔCt method. The results are reported as the fold change in gene expression normalized 

to the housekeeping gene Actb and relative to irradiation controls. 

 

6.13 microRNA isolation and quantitative real-time PCR 

 

Total RNA (including microRNA) were isolated using the mirVana Kit (Ambion) 

according to manufacturer’s instruction. The RNA (500 ng) was reverse transcribed to 

cDNA using dNTPs (Roche), M-MuLV reverse transcriptase reaction buffer (New 
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England Biolabs, Inc.), oligo-(dT)12–18 (Invitrogen), RNase inhibitor (Promega), M-

MuLV reverse transcriptase (New England Biolabs, Inc.) and miR-155 stemp loop primer 

GGTTAGACACAAGCGACACTAACCACCCCT on a Mastercycler gradient Thermal 

Cycler (Eppendorf). Quantitative real-time PCR was performed in duplicate with SYBR 

Premix Ex Taq (Takara Bio Inc.) using the Stratagene Mx3000P qPCR system (Agilent 

Technologies).  The primer sequences used were: mmu-miR-155-PCR-FW: 

GCGGCGTTAATGCTAATTGTG; hsa-mmu-miR-155-PCR-REV: 

GCGACACTAACCACCCCTATCQ; hsa-miR-155-PCR-FW: 

GCGGCGTTAATGCTAATCGTG; sno202-FW: GCTGTACTGACTTGATGAAAG; 

sno202-REV: CATCAGATGGAAAAGGGTTCA; U6-FW: 

AGAGCCTGTGGTGTCCG; U6-REV: CATCTTCAAAGCACTTCCCT. Quantitative 

real-time PCR conditions were as follows: 95°C for 1 min, 95°C for 25 s, 62°C for 25 s 

(35 cycles), 95°C for 1 min, 62°C for 1 min, and 95°C for 30 s. The relative expression of 

mir155 was determined using the 2−ΔΔCt method. The results are reported as the fold 

change in gene expression normalized to the housekeeping gene sno202 and relative to 

controls. 

 

6.14 Statistical analysis 

 

Results are expressed as mean ± SEM. Statistical analysis was performed using 

GraphPad Prism 5 (GraphPad Software). P values were calculated using an unpaired two-

tailed Student’s t -test, one- or two-way ANOVA with post-tests as indicated. Survival 

curves were generated using the Kaplan–Meier method and survival differences were 
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determined with a Mantel-Cox log-rank test. P values of ≤ 0.05 were considered 

statistically significant. 
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